
The topography of alpha-band activity tracks the content of spatial working
memory

X Joshua J. Foster,1,2,4 David W. Sutterer,1,2,4 John T. Serences,5,6 Edward K. Vogel,1,2,3,4

and Edward Awh1,2,3,4

1Department of Psychology, The University of Chicago, Chicago, Illinois; 2Institute for Mind and Biology, The University of
Chicago, Chicago, Illinois; 3Grossman Institute for Neuroscience, The University of Chicago, Chicago, Illinois; 4Department
of Psychology, University of Oregon, Eugene, Oregon; 5Department of Psychology, University of California, San Diego, La
Jolla, California; and 6Neuroscience Graduate Program, University of California, San Diego, La Jolla, California

Submitted 8 September 2015; accepted in final form 13 October 2015

Foster JJ, Sutterer DW, Serences JT, Vogel EK, Awh E. The
topography of alpha-band activity tracks the content of spatial work-
ing memory. J Neurophysiol 115: 168–177, 2016. First published
October 14, 2015; doi:10.1152/jn.00860.2015.—Working memory
(WM) is a system for the online storage of information. An emerging
view is that neuronal oscillations coordinate the cellular assemblies
that code the content of WM. In line with this view, previous work has
demonstrated that oscillatory activity in the alpha band (8–12 Hz)
plays a role in WM maintenance, but the exact contributions of this
activity have remained unclear. Here, we used an inverted spatial
encoding model in combination with electroencephalography (EEG)
to test whether the topographic distribution of alpha-band activity
tracks spatial representations held in WM. Participants in three ex-
periments performed spatial WM tasks that required them to remem-
ber the precise angular location of a sample stimulus for 1,000-1,750
ms. Across all three experiments, we found that the topographic
distribution of alpha-band activity tracked the specific location that
was held in WM. Evoked (i.e., activity phase-locked to stimulus
onset) and total (i.e., activity regardless of phase) power across a
range of low-frequency bands transiently tracked the location of the
sample stimulus following stimulus onset. However, only total power
in the alpha band tracked the content of spatial WM throughout the
memory delay period, which enabled reconstruction of location-
selective channel tuning functions (CTFs). These findings demon-
strate that alpha-band activity is directly related to the coding of
spatial representations held in WM and provide a promising method
for tracking the content of this online memory system.

working memory; alpha; EEG; oscillations; inverted encoding model

A RANGE OF EVIDENCE SUGGESTS that neuronal oscillations in the
alpha band (8–12 Hz) play a central role in the selection and
storage of information in the brain (Canolty and Knight 2010;
Fries 2005; Klimesch 2012). For instance, many studies have
shown that alpha-band activity covaries with the deployment of
spatial attention, such that posterior alpha power is reduced
contralateral to attended locations (e.g., Gould et al. 2011;
Kelly et al. 2006; Thut et al. 2006). Indeed, the topographic
distribution of alpha power not only tracks the attended visual
hemifield, but also the specific retinotopic coordinates that are
attended (Rihs et al. 2007; Worden et al. 2000). For example,
Rihs and colleagues cued participants to attend to one of eight
placeholder locations around a central fixation point and found
that the topography of alpha power systematically varied with

the cued location, with more similar topographies associated
with adjacent locations (Rihs et al. 2007). Extending these
findings, others have decoded both horizontal and vertical
shifts of attention from patterns of alpha power (Bahramisharif
et al. 2010; van Gerven and Jensen 2009) and shown that
lateralized modulations of alpha power are sensitive to the
eccentricity of the attended location (Bahramisharif et al.
2011). Thus alpha-band activity enables tracking of the locus
of spatial selective attention.

Here, motivated by past work positing a strong functional
overlap between spatial attention and spatial working memory
(WM) (Awh and Jonides 2001; Awh et al. 2006; Gazzaley and
Nobre 2012), we examined whether alpha-band activity tracks
spatial representations held in WM. Consistent with this pos-
sibility, past work has already shown that alpha power is
reduced contralateral to locations held in spatial WM (Meden-
dorp et al. 2007; Van Der Werf et al. 2008; van Dijk et al.
2010). However, these contralateral modulations do not estab-
lish whether alpha-band activity, as in the case of spatial
selective attention, tracks the specific locations that are stored.
Instead, these modulations might reflect a lateralized memory
operation (e.g., a top-down control signal) that tracks the visual
hemifield of the remembered location but not the exact location
that is stored. Here, we tested whether alpha-band activity
relates to the coding of the precise positions stored in WM,
rather than a lateralized memory process than is not sensitive to
the specific content of spatial WM.

In three experiments, participants performed spatial WM
tasks that required them to remember the precise angular
location of a stimulus, sampled from a 360° space. Using an
inverted spatial encoding model (IEM) (Brouwer and Heeger
2009, 2011; for review, see Sprague et al. 2015), we identified
the oscillatory frequency bands in which the topographic dis-
tribution of power, measured using EEG, carried location-
specific information. We found that the topographic distribu-
tion of both evoked (i.e., activity phase-locked to stimulus
onset) and total (i.e., activity regardless of phase) power across
a range of low-frequency bands transiently tracked stimulus
location. However, only the topography of total power in the
alpha band tracked the content of spatial WM throughout the
delay period, indicating that alpha-band activity is directly
related to the coding of spatial representations held in WM.
The IEM allowed us to reconstruct spatially specific response
profiles (termed channel tuning functions, or CTFs) that
tracked the stored location during both encoding and delay
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periods of WM tasks. Thus alpha-band activity enables time-
resolved tracking of spatial representations held in WM. These
findings underscore the central role that alpha-band activity
plays in coding the content of spatial WM and provide new
evidence for the functional overlap between spatial WM and
spatial attention.

MATERIALS AND METHODS

Participants

Fifteen volunteers took part in each experiment for monetary
compensation ($10/h). The participants in each experiment were
nonoverlapping, with the exception of one participant who took part
in both experiments 1 and 3. Participants reported normal or correct-
ed-to-normal vision, were between 18 and 35 yr old, and provided
informed consent according to procedures approved by the University
of Oregon Institutional Review Board. Participants were replaced if
more than 25% of trials were lost due to recording or ocular artifacts,
and/or if the participants did not complete all trials during the session
(5 in experiment 1, 7 in experiment 2, and 3 in experiment 3).

Stimulus Displays

Stimuli were generated in Matlab (Mathworks) using the Psycho-
physics Toolbox (Brainard 1997; Pelli 1997) and were presented on a
17-in. CRT monitor (refresh rate: 60 Hz) at a viewing distance of
�100 cm. All stimuli were rendered in dark gray against a medium
gray background.

The spatial WM tasks required participants to remember the angu-
lar location of a sample stimulus. The stimulus was a circle (1.6° in
diameter) centered 4° of visual angle from the central fixation point
(0.2° in diameter). For each trial, the angular location of the stimulus
was sampled from one of eight location bins spanning 0–315° (in
angular location), in steps of 45°, with jitter added to cover all 360°
of possible locations to prevent categorical coding of stimulus loca-
tion. In all experiments, the location of the sample stimulus was drawn
from each bin equally often, and in a random order, within each block
of trials.

Procedures

After providing informed consent, participants were fitted with a
cap embedded with 20 scalp electrodes before completing a spatial
WM task (see below for details). Testing took place in a dimly lit,
electrically shielded chamber. In each experiment, the spatial WM
task comprised 15 blocks of 64 trials, and took approximately 2–2.5
h to complete.

Delayed estimation task. Participants in experiments 1 and 2
performed a spatial delayed-estimation task (Wilken and Ma 2004;
Zhang and Luck 2008; see Fig. 1A). These experiments differed only
in trial timing. Participants began each trial by pressing the spacebar.
The trial began with a fixation display lasting between 600 and 1,500
ms. A sample stimulus was then presented (250 ms in experiment 1;
1,000 ms in experiment 2), followed by a delay period during which
only the fixation point remained visible (1,750 ms in experiment 1;
1,000 ms in experiment 2). After the delay period, participants used a
mouse to click on the perimeter of a probe ring (8° in diameter, 0.2°
thick) to report the remembered location of the sample stimulus as
precisely as possible. Before starting the task, participants completed
a brief set of practice trials to ensure they understood the task.

Spatial change detection task. Participants in experiment 3 per-
formed a spatial change detection task (see Fig. 1B). Rather than
reporting the remembered location after the delay period with a mouse
click, a test stimulus (identical to the sample stimulus) was presented
for 250 ms. On half of trials, the test stimulus was presented in the
same location as the sample stimulus (no-change trials), while on the

other half of trials the test stimulus was shifted 20° clockwise or
anticlockwise from the sample location (change trials). Participants
indicated with a key press whether or not the location of the stimulus
had changed. The timing of the task was identical to experiment 1
(i.e., 250-ms sample stimulus, 1,750-ms delay period). Before starting
the task, participants completed a brief set of practice trials with
feedback to ensure they knew the size of the change to expect for
change trials.

Modeling Response Error Distributions

In the delayed estimation experiments (experiments 1 and 2),
response error, the angular difference between the reported and
presented locations, could range from �180° to 180°. The response
error distribution for each participant was modeled as the mixture of
a von Mises distribution and a uniform distribution, corresponding to
trials in which the sample stimulus was successfully or unsuccessfully
stored, respectively (see Zhang and Luck 2008). Maximum likelihood
estimates were obtained for three parameters: 1) the mean of the von
Mises component (�), corresponding to response bias; 2) the disper-
sion of the von Mises distribution (s.d.), corresponding to mnemonic
precision; and 3) the height of the uniform distribution (Pf), corre-
sponding to the probability of forgetting the sample stimulus. Param-
eter estimates were obtained using the “MemFit.m” function of
MemToolbox (Suchow et al. 2013).

EEG Acquisition

We recorded EEG from 20 tin electrodes mounted in an elastic cap
(Electro-Cap International, Eaton, OH). We recorded from Interna-
tional 10/20 sites F3, FZ, F4, T3, C3, CZ, C4, T4, P3, PZ, P4, T5, T6,
O1, and O2, along with five nonstandard sites: OL midway between
T5 and O1, OR midway between T6 and O2, PO3 midway between
P3 and OL, PO4 midway between P4 and OR, and POz midway
between PO3 and PO4. All sites were recorded with a left-mastoid
reference, and were re-referenced offline to the algebraic average of
the left and right mastoids. To detect horizontal eye movements,
horizontal electrooculogram (EOG) was recorded from electrodes
placed �1 cm from the external canthus of each eye. To detect blinks
and vertical eye movements, vertical EOG was recorded from an
electrode placed below the right eye and referenced to the left
mastoid. The EEG and EOG were amplified with an SA Instrumen-
tation amplifier with a bandpass of 0.01–80 Hz and were digitized at
250 Hz using LabVIEW 6.1 running on a PC. Trials were visually

Fig. 1. Spatial working memory (WM) tasks. A: in experiments 1 and 2,
participants performed a delayed estimation task. Participants maintained
fixation while they remembered the angular location of a sample stimulus,
which they reported after a delay period by clicking on the perimeter of a rim.
Experiments 1 and 2 differed only in trial timing. B: in experiment 3,
participants performed a change detection task. Rather than report the location
of the sample stimulus, a test stimulus was presented after the delay period and
participants reported whether or not the location of the stimulus had changed.
Stimuli not perfectly to scale.
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inspected for artifacts, and we discarded trials contaminated by
blocking, blinks, detectable eye movements, excessive muscle noise,
or skin potentials. An average of 12.3% (SD � 5.5%) of trials were
rejected per participant across all three experiments.

Time-Frequency Analysis

Time-frequency analyses were performed using Matlab in conjunc-
tion with the Signal Processing toolbox and the EEGLAB toolbox
(Delorme and Makeig 2004). To isolate frequency-specific activity,
the raw EEG signal was bandpass filtered using a two-way least-
squares finite impulse response filter (“eegfilt.m” from EEGLAB
Toolbox; see Delorme and Makeig 2004). This filtering method uses
a zero-phase forward and reverse operation, which ensures that phase
values are not distorted, as can occur with forward-only filtering
methods. A Hilbert Transform (Matlab Signal Processing Toolbox)
was applied to the bandpass-filtered data, producing the complex

analytic signal, z(t), of the filtered EEG, f(t), where z(t) � f(t) � if̃
�t� � A(t)ei�(t), from which instantaneous amplitude, A(t), was ex-

tracted; f̃�t� is the Hilbert Transform of f(t), and i � ��1. The
complex analytic signal was extracted for each electrode using the
following Matlab syntax:

hilbert(eegfilt(data, F, f1, f2) ' ) '

where data is a 2D matrix of raw EEG (number of trials � number of
samples), F is the sampling frequency (250 Hz), f1 is the lower bound
of the filtered frequency band, and f2 is the upper bound of the filtered
frequency band. For alpha-band analyses, we used an 8- to 12-Hz
bandpass filter; thus f1 and f2 were 8 and 12, respectively. For the
time-frequency analysis, we searched a broad range of frequencies
(4–50 Hz, in increments of 1 Hz with a 1-Hz bandpass). For these
analyses f1 and f2 were 4 and 5 to isolate 4- to 5-Hz activity; 5 and
6 to isolate 5- to 6-Hz activity; and so on.

Total power was computed by squaring the complex magnitude of
the complex analytic signal, and then averaging across trials. Thus
total power reflects ongoing activity irrespective of its phase relation-
ship to onset of the sample stimulus. In contrast, evoked power was
calculated by first averaging the complex analytic signal across trials,
and then squaring the complex magnitude of the averaged analytic
signal. Evoked power reflects activity phase-locked to stimulus onset
because only activity with consistent phase across trials remains after
averaging the complex analytic signal.

Because calculating evoked power requires averaging across trials,
artifact-free trials were partitioned into three blocks. To prevent bias
in our analysis, we equated the number of observations across location
bins within each block. To this end, we calculated the minimum
number of trials for any given location bin n for each participant, and
assigned n/3 many trials for each location bin to each of the three
blocks. Importantly, the blocks were independent (i.e., no trial was
repeated across blocks) to prevent circularity in the cross-validation
procedures used for the IEM routine (see Inverted Encoding Model).
Evoked and total power were then calculated for each location bin for
each block, resulting in an l*b � m � s matrix of both evoked and
total power values, where l is the number of location bins, b is the
number of blocks, m is the number of electrodes, and s is the number
of time samples. For the analysis in which the IEM is applied across
many frequency bands, we downsampled the data matrix to a sample
rate of 50 Hz (i.e., one sample every 20 ms) to reduce computation
time. The data matrix was not downsampled for analyses restricted to
the alpha band.

Finally, because we equated the number of trials across location
bins within blocks, a random subset of trials were not included in any
block. Thus we randomly generated multiple block assignments (five
for the full time-frequency analyses, and ten for the alpha-band
analyses), each resulting in an l*b � m � s power matrix. The IEM
routine (see Inverted Encoding Model) was applied to the matrices of

power values for each block assignment, and their outputs (i.e.,
channel response profiles) were averaged. This approach better uti-
lized the complete data set for each participant and minimized the
influence of idiosyncrasies in estimates of evoked and total power
specific to certain assignments of trials to blocks.

Inverted Encoding Model

We used an IEM to reconstruct location-selective CTFs from the
topographic distribution of oscillatory power across electrodes. We
assumed that power measured at each electrode reflects the weighted
sum of eight spatial channels (i.e., neuronal populations), each tuned
for a different angular location (cf. Brouwer and Heeger 2009, 2011;
Sprague and Serences 2013; Sprague et al. 2014). We modeled the
response profile of each spatial channel across angular locations as a
half sinusoid raised to the seventh power, given by:

R � sin�0.5��7

where � is angular location (ranging from 0° to 359°), and R is the
response of the spatial channel in arbitrary units. This response profile
was circularly shifted for each channel such that the peak response of
each spatial channel was centered over one of the eight location bins
(i.e., 0°, 45°, 90°, etc.). The predicted channel responses for each
location bin were derived from these basis functions (calculated using
the angular location at the center of each bin).

An IEM routine was applied to each time-frequency point in the
time-frequency analyses, and to each time point in the alpha-band
analyses. This routine proceeded in two stages (train and test). In the
training stage, training data B1 were used to estimate weights that
approximate the relative contribution of the eight spatial channels to
the observed response measured at each electrode. Let B1 (m elec-
trodes � n1 observations) be the power at each electrode for each
measurement in the training set, C1 (k channels � n1 observations) be
the predicted response of each spatial channel (determined by the
basis functions) for each measurement, and W (m electrodes � k
channels) be a weight matrix that characterizes a linear mapping from
“channel space” to “electrode space”. The relationship between B1,
C1, and W can be described by a general linear model of the form:

B1 � WC1

The weight matrix was obtained via least-squares estimation as
follows:

Ŵ � B1C1
T�C1C1

T��1

In the test stage, with the weights in hand, we inverted the model to
transform the observed test data B2 (m electrodes � n2 observations)

into estimated channel responses, Ĉ2 (k channels � n2 observations):

Ĉ2 � �ŴTŴ��1
ŴTB2

Each estimated channel response function was circularly shifted to a
common center (i.e., 0° on the “Channel Offset” axes of the figures)
by aligning the estimated channel responses to the channel tuned for
the stimulus bin to yield CTFs. The IEM routine was performed
separately for each sample point from 500 ms prior to stimulus onset
through to the end of the delay period (2000 ms).

Importantly, we used a “leave-one-out” cross validation routine
such that two blocks of estimated power values (see Time-Frequency
Analysis) served as B1 and were used to estimate W, and the remaining
block served as B2 and was used to estimate C2. Thus the training and
test data were always independent. This process was repeated until
each of the three blocks were held out as the test set, and the resulting
CTFs were averaged across each test block.

Finally, because the exact contributions of each spatial channel to
each electrode (i.e., the channel weights, W) will likely vary by
subject, the IEM routine is applied separately for each subject, and
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statistical analyses were performed on the reconstructed CTFs. This
approach allowed us to disregard differences in how location selec-
tivity is mapped to scalp-distributed patterns of power across subjects,
and instead focus on the profile of activity in the common stimulus or
“information” space (Sprague and Serences 2015).

Statistical Analysis

To quantify the location selectivity of CTFs, we used linear
regression to estimate CTF slope (i.e., slope of channel response as a
function of location channels after collapsing across channels that
were equidistant from the channel tuned to the location of the evoking
stimulus), where higher CTF slope indicates greater location selectiv-
ity. To test whether CTF selectivity was reliably above chance, we
tested whether CTF slope was greater than zero using a one-sample
t-test. Because mean CTF slope may not be normally distributed under
the null hypothesis, we employed a Monte Carlo randomization
procedure to empirically approximate the null distribution of the
t-statistic. Specifically, we implemented the IEM as described above
but randomized the location labels within each block so that the labels
were random with respect to the observed responses in each electrode.
This randomization procedure was repeated 1,000 times to obtain a
null distribution of t-statistics. To test whether the observed CTF
selectivity was reliably above chance, we calculated the probability of
obtaining a t-statistic from the surrogate null distribution greater than
or equal to the observed t-statistic (i.e., the probability of a Type 1
Error). Our permutation test was therefore a one-tailed test. CTF
selectivity was deemed reliably above chance if the probability of a
Type 1 Error was less than 0.01. This permutation testing procedure
was applied to each time-frequency point in the time-frequency
analyses, and to each time point in the alpha-band analyses.

Quantifying Biases in Eye Position

Although we discarded trials with detectable eye movements, small
but systematic biases in eye position toward the remembered location
may still exist. Indeed, we found evidence for very small but reliable
biases in horizontal EOG amplitude that tracked stimulus location (see
RESULTS). If eye position is biased towards stimulus location, then
there should be a linear relationship between the horizontal position of
the stimulus and horizontal EOG amplitude. Thus we used linear
regression to calculate an eye bias score to quantify the extent to
which eye position covaried with stimulus location. The eye bias score
was calculated as the slope of the best fitting linear function describ-
ing horizontal EOG amplitude (in �V) as a function of the horizontal
location of the stimulus (in degrees of visual angle). Higher eye bias
scores therefore reflect greater changes in eye position as a function of
stimulus location. This eye bias score was calculated across time for
each participant separately.

RESULTS

Behavior

Task performance confirmed that participants were engaged in
the spatial WM tasks in all three experiments. In the delayed-
estimation experiments (experiments 1 and 2), mnemonic preci-
sion computed from a mixture model (Suchow et al. 2013; Zhang
and Luck 2008) was high, indicated by low s.d. values (experi-
ment 1: M � 6.6°, SD � 1.8°; experiment 2: M � 5.2°, SD �
1.6°), and the probability that the stimulus was forgotten, Pf, was
extremely low (experiment 1: M � 0.002, SD � 0.002; experi-
ment 2: M � 0.002, SD � 0.002). In the spatial change detection
task (experiment 3), change detection accuracy was high (M �
90.1%, SD � 4.7%).

Experiment 1: Identifying Frequency Bands that Track the
Content of Spatial Working Memory

We first sought to identify the frequency bands in which the
topographic distribution of oscillatory power tracked the con-
tent of spatial WM. To this end, we used an IEM to reconstruct
location-selective CTFs (see MATERIALS AND METHODS). Using
the IEM, we searched a broad range of frequencies (4–50 Hz,
in increments of 1 Hz) across time to identify the frequency
bands in which the topographic distribution of evoked and total
power tracked the location of the sample stimulus. If the
multivariate pattern of power across electrodes carries infor-
mation about stimulus location, then the IEM should reveal a
graded CTF profile, with a clear peak in the channel tuned for
the remembered location. On the other hand, if the multivariate
pattern of power does not carry information about stimulus
location, then the IEM should produce a flat CTF profile,
indicating no location tuning. Figure 2 shows location selec-
tivity of reconstructed CTFs (as measured by CTF slope) as a
function of time and frequency for both evoked and total
power. We performed a permutation test at each time-fre-
quency point to identify the points at which CTF slope was
reliably above zero (see MATERIALS AND METHODS). We found the
topographic distribution of both evoked and total power tran-
siently tracked the location of the sample stimulus across a
range of low frequencies (�4–20 Hz; Fig. 2A). In contrast,
only total alpha power (�8–12 Hz) enabled sustained tracking
of the stored location throughout the blank delay (Fig. 2B).
Thus the topographic distribution of total alpha power tracked
spatial representations held in WM.

Alpha power tracks the content of spatial WM with fine-
grained spatial resolution. Previous work has demonstrated
that alpha power decreases contralateral to a location held in
spatial WM (Medendorp et al. 2007; Van Der Werf et al. 2008;

Fig. 2. Identifying the frequency bands that track the content of spatial WM in
experiment 1. An IEM was used to reconstruct location-selective channel
tuning functions (CTFs) from the topographic distribution of evoked (A) or
total (B) power across a broad range of frequencies (4–50 Hz, in increments of
1 Hz) and time. Evoked and total power transiently tracked stimulus location
after stimulus onset across a broad range of frequencies (4 to �20 Hz).
However, only total alpha power tracked the content of spatial WM throughout
the delay period. Color represents CTF slope, a measure of CTF selectivity that
quantifies the location-specific activity in the topographic distribution of
power. Points at which CTFs slope was not reliably above zero as determined
by a permutation test are set to zero (dark blue).
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van Dijk et al. 2010). It is possible that location selectivity in
the alpha band, measured using CTF slope, simply reflects
sensitivity of alpha power to the hemifield (or quadrant) of
the remembered location. Such coarse location tuning could
give rise to a graded CTF when shifted and averaged across
location bins. To test this possibility, we examined the
channel response profiles reconstructed from total alpha (8–12
Hz) power in experiment 1 for each of the eight location bins
separately. If the topographic distribution of alpha power
tracks the precise location held in WM, then the channel
response profiles should differ for each of the eight location
bins. Specifically, for each location bin, we should observe a
graded tuning profile, with a peak response in the channel
tuned for the remembered location. Figure 3 shows the channel
responses (averaged across time from 0 to 2,000 ms) for each
of the eight location bins. Indeed, we found that the peak
channel response was always seen in the channel tuned for the
remembered location, providing clear evidence that the topog-
raphy of alpha power tracked the specific angular location held
in WM.

Examining the format of spatial representations tracked by
alpha power. Next we examined the format of the spatial
representations tracked by the topographic distribution of alpha
power. Our standard basis set specified a “graded” channel
response profile, with the peak response in the channel tuned
for the remembered location, and with gradually diminishing
response for channels tuned for other locations. This graded
response profile across feature-selective cells is the hallmark of
population coding of sensory variables (Pouget et al. 2000),
rather than more abstracted (e.g., categorical) representations.
We found that CTFs reconstructed from alpha-band activity
showed this graded profile, suggesting that that modulations of
alpha power follow a graded, sensory format (Fig. 4A). How-
ever, using an IEM, it is always possible that the graded CTF
profile reflects the graded basis function itself rather than truly
graded location-selective activity (Ester et al. 2015; Saproo and
Serences 2014). To rule out this possibility, we reconstructed
CTFs with the IEM, this time with a modified basis set of eight
orthogonal Kronecker delta functions, each centered on one of
the eight location bins. These functions do not specify a graded
profile of responses across channels. Thus, if a graded profile

is observed using this basis function it must reflect a graded
pattern in the data itself. In contrast, if the spatial representa-
tions tracked by alpha-band power do not follow this graded
format, we would expect to recover a peak in the channel tuned
for the remembered location, and uniform responses across the
rest of the channels. Using this orthogonal basis set, recon-
structed CTFs had a graded profile (Fig. 4B), confirming that
graded location tuning is an intrinsic property of alpha activity
and is not imposed by the graded basis function. Figure 4C
shows that this graded profile was consistent across time.
Therefore, alpha-band activity follows the expected format of
a sensory code.

Ruling out biases in eye position. Eye movements generate
electrical potentials that affect EEG recordings. We in-
structed participants to maintain fixation during the spatial
WM task, and discarded trials with detectable eye move-
ments. Nevertheless, small but systematic biases in eye
position toward the remembered location may still exist. To
examine this possibility, we inspected horizontal electrooc-
ulogram as a function of stimulus location. We found a
reliable bias in eye position that tracked stimulus position.
However, this bias was remarkably small (�2 �V), corre-
sponding to shifts from fixation of less than 0.15° of visual
angle on average (Lins et al. 1993a, 1993b). We found that
CTF slope in the alpha-band is greatest early in the trial, and
decreased toward the end of the delay period (Fig. 5A). In
contrast, bias in eye position, quantified using an eye bias
metric (see MATERIALS AND METHODS), increased gradually as
the delay period progressed (Fig. 5B). Therefore, subtle
biases in eye position cannot explain the link between alpha
activity and the content of spatial WM.

Fig. 3. Unshifted channel responses reconstructed from total alpha power after
stimulus onset (averaged from 0–2,000 ms) shown for each of the eight
stimulus location bins in experiment 1. For all location bins, the peak response
is seen in the channel tuned for that stimulus location, confirming that the
topography of alpha power tracked the precise location held in spatial WM.

Fig. 4. CTFs reconstructed from total alpha (8 –12 Hz) power after stimulus
onset (averaged from 0 –2,000 ms) using the standard, “graded” basis set
(A) and using a basis set of eight orthogonal Kronecker delta functions (B)
for experiment 1. CTFs reconstructed using the orthogonal basis set still
showed a smooth, graded profile, demonstrating that the intrinsic tuning
properties of alpha power are well-described by the graded basis function
of the spatial encoding model. Shaded error bars reflect bootstrapped
standard error of the mean. C: time-resolved CTF reconstructed using the
orthogonal basis set, showing that the graded CTF profile was consistent
across time points.
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Experiment 2: Alpha Activity Tracks Spatial Representations
When the Stimulus Remains in View

In experiment 1, we demonstrated that that topographic
patterns of alpha power track the content of spatial WM during
the delay period of a WM task. Recent work suggests that WM
is important not only for maintaining representations of stimuli
that are no longer externally available but also for representing
stimuli that remain within view (Chun 2011; Tsubomi et al.
2013). In experiment 2, we used an extended encoding period
(1,000 ms) to examine whether the topographic distribution of
alpha power tracks the spatial representation of a stimulus that
remains in view. We observed location-selective CTFs recon-
structed from total alpha activity (Fig. 6B). Importantly, robust
CTFs were seen throughout both the stimulus (0–1,000 ms)
and delay (1,000–2,000 ms) periods, demonstrating that alpha
activity tracks the location of a to-be-remembered stimulus,
even when the stimulus remains in view. Thus total alpha
power tracks spatial representations both in the presence and
absence of visual input.

In experiment 2, we again found that evoked alpha power
generated reliable CTFs following stimulus onset (Fig. 6A).
However, weak but reliable CTF selectivity was also seen
following stimulus offset (at 1,000 ms). This second burst of
location-specific evoked activity may reflect resynchronization
of low-frequency activity caused by the abrupt visual transient
of stimulus offset (Gruber et al. 2005; Hanslmayr et al. 2007).
However, further work is necessary to test this possibility.

Experiment 3: Ruling Out Response Confounds

In our first two experiments, we used a delayed-estimation
task in which participants used a mouse to click on a ring
around fixation to report the remembered location (Fig. 1A).
Consequently, the remembered location covaried with the
required response. In experiment 3, we sought to rule out the
possible contribution of preparatory motor activity to the lo-
cation-selective CTFs that we observed in the delayed-estima-
tion task. To this end, participants performed a spatial change
detection task, in which they remembered the precise location
of a sample stimulus, and reported whether the location of a
test stimulus, presented after the delay period, differed from
that of the sample stimulus (Fig. 1B). Critically, participants
could not plan their response (“change” vs. “no change”) until
the test stimulus was presented. Therefore, any location-selec-
tive delay activity cannot reflect a planned response. As in
experiment 1, evoked CTFs only transiently tracked stimulus
location (Fig. 7A), while the topographic distribution of total
alpha power tracked the remembered location, allowing for the
reconstruction of reliable CTFs throughout the delay period
(Fig. 7B). Thus findings from experiment 3 solidify our con-
clusion that alpha activity tracks the contents of spatial mem-
ory, rather than the trajectory of a planned response.

Location-Selective Activity Is Specific to the Alpha-Band: A
Cross-Experiment Analysis

In our analyses of experiments 2 and 3 so far, we focused
exclusively on the alpha band (8–12 Hz) because this fre-
quency band was implicated in WM storage in experiment 1.
These analyses replicated the finding that the topographic
distribution of alpha power tracks the content of spatial WM.

Fig. 5. Alpha CTF selectivity and small biases in eye position toward the
remembered location show different time courses. A: location-selectivity of
CTFs reconstructed from total alpha (8–12 Hz) power across time. Although
CTF selectivity is robust throughout the delay period, it gradually declines
across time. B: eye bias score quantifying bias in eye position toward (positive
values) or away (negative values) from the remembered location. This score
reflects the change in HEOG amplitude (in �V) seen when the horizontal
stimulus position changes by one degree of visual angle. In contrast to CTF
selectivity, bias in eye position toward the remembered location increases
across time, demonstrating that location-selective patterns of alpha power are
not accounted for by small but reliable biases in eye position. Shaded error bars
reflect bootstrapped standard error of the mean.

Fig. 6. Total alpha activity tracks stimulus location when the stimulus remains
in view. Location CTFs reconstructed from evoked (A) and total (B) alpha
(8–12 Hz) activity during the spatial WM task with a long encoding period
(1,000 ms; experiment 2). Despite the stimulus remaining in view from 0 to
1,000 ms, total alpha power tracked stimulus location during this period,
demonstrating that total alpha power tracks spatial representations both in the
presence and absence of visual input. Evoked alpha power showed reliable but
weaker location selectivity during the delay period. White markers along the
top of the panels indicate the points at which CTF slope was reliably above
chance as determined by a permutation test.
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However, because we focused on the alpha-band, these anal-
yses did not replicate the finding that sustained, location-
selective activity is specific to the alpha band. Next, we sought
to identify the frequency bands in which oscillatory power
tracked stimulus location across all three experiments. To this
end, we used the IEM to search time-frequency space for
frequencies that carried location-specific information in exper-
iments 2 and 3 (as we previously reported for experiment 1) to
obtain maps of CTF slope across time and frequency (4–50 Hz,
in increments of 1 Hz) for each experiment (Fig. 8A). With
these maps in hand, we then identified the points in time-
frequency space that showed reliable CTF selectivity across all
three experiments to create a cross-experiment map of loca-
tion-selective oscillatory activity (Fig. 8B). This simple but
conservative analysis revealed that evoked and total power
across a range of frequency bands (�4–20 Hz) transiently
tracked stimulus location, while only total alpha power tracked
the remembered location throughout the delay period. The
cross-experiment maps combined data from three independent
experiments, with nonoverlapping groups of participants.1

Therefore, this analysis provides clear evidence that location-
selective oscillatory activity during WM maintenance, as re-
flected in the topographic distribution of oscillatory power, is
specific to the alpha band.

Our results provide decisive evidence that the topography of
alpha power tracks the location held in spatial WM, suggesting
that alpha-band activity is related to the coding of spatial
representations in WM. However, it is less clear whether other
frequency bands play similar roles. Theta- and gamma-band

activity (i.e., 4–7 Hz and �30–100 Hz, respectively) are of
particular interest because they have been proposed to play a
central role in coordinating cellular assembles that code the
content of WM (Lisman 2010; Roux and Uhlhaas 2014). Given
that we observed no evidence of sustained location selectivity
in the topographic distribution of theta or gamma power, it is
tempting to conclude that the frequency bands do not contrib-
ute to the coding of spatial representations in WM. However,
it is possible that these frequency bands contribute to the
coding of spatial WM representations in ways that do not result
in location-specific patterns of EEG power across the scalp.
For example, location-specific patterns of theta-band activity
may exist in hippocampal local field potentials (e.g., Agarwal
et al. 2014). Such location selectivity might not necessarily
produce location-specific patterns of theta power on the scalp.
Thus our results do not rule out potential roles for oscillatory
activity outside the alpha band in coding the content of spatial
WM.

DISCUSSION

Previous work has demonstrated that alpha power is reduced
contralateral to locations held in spatial WM (Medendorp et al.
2007; Van Der Werf et al. 2008; van Dijk et al. 2010).
However, those studies left it unanswered whether the topo-
graphic distribution of alpha activity tracked the precise loca-
tion held in WM, or whether alpha activity reflected a lateral-
ized memory process (e.g., a contralateral control signal) that is
insensitive to the specific location that is stored. Here, we
provide clear evidence that the topographic pattern of total
alpha-band power precisely tracks the angular location main-
tained in WM. We used an inverted encoding model (IEM) to
reconstruct CTFs from the pattern of EEG power across the
scalp, which provided an assay of location-selective activity
across the neuronal populations reflected in EEG activity. A
clear pattern of results emerged over three independent exper-
iments: while evoked and total power across a range of fre-
quency bands transiently tracked the location of the sample
stimulus, only total alpha power tracked the remembered
location throughout the delay period. Furthermore, these loca-
tion-specific patterns of alpha power showed the hallmark
graded profile of a sensory population code. This result clearly
demonstrates that alpha activity coordinates location-tuned
neuronal populations rather than populations that code for
more abstract variables, such as top-down control signals or
categorical representations of location. Together, these results
demonstrate that alpha activity is related to the sensory coding
of spatial representations in WM.

Our findings build on a foundation of human neuroimaging
work demonstrating that the feature content of visual WM can
be recovered from voxelwise patterns of activity (e.g., Chris-
tophel et al. 2012; Emrich et al. 2013; Ester et al. 2009, 2013,
2015; Harrison and Tong 2009; Serences et al. 2009; Rigall
and Postle 2012; Sprague et al. 2014). While stimulus-specific
activity measured with functional magnetic resonance imaging
(fMRI) allows for reconstruction of feature-selective CTFs
(e.g., Ester et al. 2013, 2015), the temporal precision of this
approach is limited by the sluggish hemodynamic response. In
a recent study, Garcia and colleagues reconstructed time-
resolved CTFs from the topographic distribution of power
evoked by a flickering stimulus, highlighting the potential of

1 One participant took part in both experiments 1 and 3. This subject was
excluded from the experiment 3 dataset for the purpose of the cross-experiment
map to ensure that the data from each experiment were independent.

Fig. 7. Ruling out response confounds. Location CTFs reconstructed from
evoked (A) and total (B) alpha (8–12 Hz) power during a spatial change
detection task (experiment 3). Because participants could not anticipate the
response (“change” vs. “no change”) during the delay period, this task
eliminated any contribution of preparatory motor activity to the location CTFs.
Nevertheless, total alpha power tracked location held in spatial WM through-
out the delay period, whereas evoked alpha power only transiently tracked
stimulus position. White markers along the top of the panels indicate the points
at which CTF slope was reliably above chance as determined by a permutation
test.
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combining IEMs with EEG recordings to obtain temporally-
resolved stimulus-specific activity (Garcia et al. 2013). Here,
we find that total alpha power tracks the content of spatial WM
throughout a delay period, in the absence of rhythmic visual
stimulation. Thus the intrinsic role that alpha-band activity
plays in spatial WM storage enables moment-by-moment
tracking of location-specific activity, without the need for a
flickering stimulus. Given that the topography of alpha power
covaries with attended locations (Bahramisharif et al. 2010,
2011; Rihs et al. 2007; van Gerven and Jensen 2009), we
expect that this approach should also provide a powerful tool
for tracking the dynamics of covert attention.

The IEM approach allowed us to reconstruct CTFs, provid-
ing an assay of location-specific activity across large popula-
tions of neurons (Serences and Saproo 2012). While single
neurons are the building block for sensory codes, it is the joint
activity of a population of cells that guide behavior (Butts and
Goldman 2006; Jazayeri and Movshon 2006). Thus popula-

tion-level encoding models provide a good approach for link-
ing brain and behavior (Sprague et al. 2015). This approach
has already enjoyed some success. For example, Sprague
and colleagues (Sprague et al. 2014) used a spatial encoding
model to obtain population-level reconstructions of stimulus
location from patterns of activity measured with fMRI
during a spatial WM task. Sprague and colleagues found
that amplitude of spatial reconstructions tracked the decline
in mnemonic precision that is seen with increasing set size
in a WM task. The location-specific patterns of alpha power
we report here provide a new window onto population-level
coding. Although we do not demonstrate it here, we expect
that the topography of alpha activity should also track
changes in the quality of population codes and predict
behavior. Furthermore, because of the temporal resolution
that EEG affords, this approach may be sensitive to rapid
changes in the quality of population codes. Further work is
necessary to test these predictions.

Fig. 8. Location-selective activity is specific to the alpha band. A: slope of CTFs reconstructed from the topographic distribution of evoked and total power across
a broad range of frequencies (4–50 Hz, in increments of 1 Hz) and time for experiments 1–3. Points at which CTF slope was not reliably above zero as determined
by a permutation test are set to zero (dark blue). B: cross-experiment map of the points for which CTF slope was reliably above chance for all three experiments.
Reliable points are shown in light blue. Across three experiments, evoked and total power transiently tracked stimulus location after stimulus onset across a broad
range of frequencies (4 to �20 Hz) while only total alpha power tracked the content of spatial WM throughout the delay period.
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What are the cortical origins of the topographic pattern of
alpha power that track the content of spatial WM? In studies of
spatial attention, changes in topographic patterns of alpha
power are thought to reflect synchronization of posterior visual
areas tuned for unattended locations, reflecting suppression of
processing in these regions (Kelly et al. 2006; Rihs et al. 2007;
Thut et al. 2006). While it is tempting to conclude that the
location-specific modulations of alpha activity reflect synchro-
nization within visual cortex, it is difficult to infer the cortical
source of oscillations based on EEG recordings alone. Neuro-
imaging studies have revealed location-specific activity in
frontal, parietal, and occipital cortex during spatial attention
and WM tasks (Silver and Kastner 2009; Sprague and Serences
2013; Sprague et al. 2014). Thus it is possible that location-
specific patterns of alpha power might reflect synchronization
within or between any of these location-selective regions.

We found that alpha activity tracked stimulus location not
only during the delay period, but also while the stimulus
remained in view throughout an extended encoding period
(experiment 2). Traditionally, visual WM has been character-
ized as a system for the maintenance of visual inputs that are
no longer present. However, recent work has challenged this
view, instead suggesting that WM also constrains representa-
tion of externally available stimuli (Chun 2011; Tsubomi et al.
2013). For example, Tsubomi and colleagues demonstrated
that memory load-dependent contralateral delay activity
(CDA), an electrophysiological marker of maintenance in vi-
sual WM, showed a similar profile across both stimulus-absent
and stimulus-present periods under the same task demands
(Tsubomi et al. 2013). Here, we show that the alpha-band
activity, like the CDA, plays a role in maintaining active spatial
representations in both the presence and absence of visual
input.

Our finding that the topography of alpha power tracks the
content of spatial WM is consistent with the broad hypothesis
that neuronal oscillations synchronize the cellular assemblies
that code for mental representations (Fell and Axmacher 2011;
Hebb 1949; Nicolelis et al. 1997; Sejnowski and Paulsen 2006;
Singer and Gray 1995; Singer 1999; Watrous et al. 2015).
Applied to WM, this view predicts that patterns of oscillatory
activity should not only track spatial representations held in
WM, but also nonspatial representations (e.g., color and ori-
entation). Indeed, Salazar and colleagues found content-spe-
cific synchronization between frontal and parietal local field
potentials in monkeys, peaking at 15 Hz. Frontoparietal syn-
chronization tracked both the location and identity (i.e., shape)
of a remembered stimulus in a delayed-match to sample task,
suggesting that both identity and location are encoded in
patterns of synchronization (Salazar et al. 2012). However,
evidence for the role of oscillations in coordinating the code of
nonspatial features is sparse, and further work is needed to
examine whether neuronal synchrony plays a general role in
coordinating feature-selective cellular assemblies that code the
content of WM.

Conclusions

Using an inverted spatial encoding model, we demonstrated
that the topographic distribution of alpha power tracks spatial
representations held in WM. These findings show that alpha-
band activity plays a role in coding for spatial information held

in WM, and this approach provides a time-resolved tool for
tracking the content of spatial WM.
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