
https://doi.org/10.1177/0956797617699167

Psychological Science
2017, Vol. 28(7) 929 –941
© The Author(s) 2017
Reprints and permissions: 
sagepub.com/journalsPermissions.nav
DOI: 10.1177/0956797617699167
www.psychologicalscience.org/PS

Research Article

A typical visual scene contains more information than an 
observer can process at once. Therefore, the observer 
must focus limited processing resources on the most rel-
evant aspects of the environment. Spatial attention plays 
a central role in this effort, enhancing the quality and 
speed of processing at attended locations (Carrasco & 
McElree, 2000; Eriksen & Hoffman, 1974; Posner, 1980; 
for review, see Carrasco, 2011). Because spatial attention 
is essential for normal perceptual function, there is great 
interest in understanding the neural basis of this process. 
One promising approach has been to examine the links 
between attentional states and rhythmic brain activity. A 
growing body of evidence suggests that oscillatory activ-
ity in the alpha frequency band (8–12 Hz) is integral to 
covert spatial attention. Measurements of the topographic 
distribution of alpha power across the scalp have revealed 
that alpha power is reduced contralateral to an attended 
location (e.g., Kelly, Lalor, Reilly, & Foxe, 2006; Sauseng 
et al., 2005; Thut, Nietzel, Brandt, & Pascual-Leone, 2006). 

Further work has shown that the topography of alpha 
power tracks not just the hemifield but also the specific 
location that an observer is attending (e.g., Bahramisharif, 
Van Gerven, Heskes, & Jensen, 2010; Rihs, Michel, & 
Thut, 2007; Worden, Foxe, Wang, & Simpson, 2000). 
These findings suggest that spatially specific alpha-band 
activity directly tracks the deployment of spatial attention 
(Foxe & Snyder, 2011; Jensen & Mazaheri, 2010).

Nevertheless, the hypothesis that alpha-band activity 
is integral to spatial attention makes a clear prediction 
that remains untested: The topography of alpha-band 
activity should track not only the spatial locus of atten-
tion but also the time course of covert orienting. Extant 
studies have not provided a rigorous analysis of the time 

699167 PSSXXX10.1177/0956797617699167Foster et al.Alpha Oscillations Track Covert Spatial Attention
research-article2017

Corresponding Author:
Joshua J. Foster, Institute for Mind and Biology, University of Chicago, 
940 East 57th St., Chicago, IL 60637 
E-mail: joshuafoster@uchicago.edu

Alpha-Band Oscillations Enable  
Spatially and Temporally Resolved  
Tracking of Covert Spatial Attention

Joshua J. Foster1,2, David W. Sutterer1,2, John T. Serences3,4, 
Edward K. Vogel1,2, and Edward Awh1,2

1Department of Psychology, University of Chicago; 2Institute for Mind and Biology, University of Chicago;  
3Department of Psychology, University of California, San Diego; and 4Neurosciences Graduate Program,  
University of California, San Diego

Abstract
Covert spatial attention is essential for humans’ ability to direct limited processing resources to the relevant aspects 
of visual scenes. A growing body of evidence suggests that rhythmic neural activity in the alpha frequency band 
(8–12 Hz) tracks the spatial locus of covert attention, which suggests that alpha activity is integral to spatial attention. 
However, extant work has not provided a compelling test of another key prediction: that alpha activity tracks the 
temporal dynamics of covert spatial orienting. In the current study, we examined the time course of spatially specific 
alpha activity after central cues and during visual search. Critically, the time course of this activity tracked trial-by-
trial variations in orienting latency during visual search. These findings provide important new evidence for the link 
between rhythmic brain activity and covert spatial attention, and they highlight a powerful approach for tracking the 
spatial and temporal dynamics of this core cognitive process.
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course of spatially specific alpha activity or examined 
whether the time course of this activity tracks variations 
in the latency of covert spatial orienting. Thus, our goal 
was to determine whether dynamic changes in alpha-
band activity provide a sensitive index of the speed of 
covert spatial orienting.

To this end, we used electroencephalography (EEG) 
recordings and an inverted encoding model (IEM; 
Brouwer & Heeger, 2009; Sprague & Serences, 2013; for 
review, see Sprague, Saproo, & Serences, 2015) to exam-
ine the time course of spatially specific alpha-band activ-
ity. This approach assumes that the topographic pattern 
of alpha power across the scalp reflects the activity of a 
number of underlying spatially tuned channels (or neu-
ronal populations; Fig. 1a). By first estimating the relative 
contributions of these channels to each electrode on the 
scalp (Fig. 1b), the model can then be inverted so that 
the underlying response of these spatial channels can be 
estimated from the pattern of alpha power across the 
scalp (Fig. 1c). The resulting profile of responses across 
the spatial channels (termed channel-tuning functions, 
or CTFs) reflects the spatial tuning of population-level 
alpha power, as measured with EEG. Thus, the IEM 
approach enables a straightforward quantification of spa-
tially selective activity from a higher-dimensional pattern 
of alpha power on the scalp. By performing this analysis 
across separate points in time, we were able to examine 
the temporal dynamics of spatially selective alpha-band 
activity (also see Foster, Sutterer, Serences, Vogel, & Awh, 
2016; Samaha, Sprague, & Postle, 2016).

In two experiments, we tested whether the topo-
graphic distribution of alpha-band activity tracks the time 
course of covert orienting. In Experiment 1, subjects per-
formed a spatial-cueing task, which allowed us to exam-
ine the time course of alpha-band CTFs as subjects shifted 
covert attention to the cued location following an attention- 
directing cue. In Experiment 2, subjects performed a 
visual search task, in which we manipulated the latency 
of covert orienting toward the target by varying search 
difficulty. This design allowed us to directly test whether 
the time course of alpha-band CTFs tracked differences 
in the latency of target selection across different levels of 
search difficulty and as a function of within-subject varia-
tions in orienting latency across trials, as indexed by reac-
tion times.

General Method

Subjects

Fifty volunteers (20 in Experiment 1, 30 in Experiment 21) 
participated in the experiments for monetary compensa-
tion ($10 per hr). Subjects were between 18 and 35 years 
old, reported normal or corrected-to-normal visual acuity, 

and provided informed consent according to procedures 
approved by the institutional review board at the Univer-
sity of Oregon.

In Experiment 1, we did not analyze data from sub-
jects who provided fewer than 700 artifact-free trials (i.e., 
trials that were not contaminated by recording or ocular 
artifacts). This exclusion criterion was set during data col-
lection and was chosen on the basis of our work using 
the IEM method to track locations stored in working 
memory (Foster et al., 2016). Two subjects were excluded 
because of excessive artifacts, and 2 subjects were 
excluded because of an error with stimulus presentation. 
Thus, the final sample included a total of 16 subjects.2 All 
subjects in the final sample provided data for at least 700 
artifact-free trials (M = 1,165, SD = 173).

In Experiment 2, we did not analyze data from sub-
jects who provided fewer than 600 artifact-free trials 
(with correct responses) for each condition. We relaxed 
the exclusion criterion in Experiment 2 because we 
obtained fewer trials per condition, because Experiment 
2 included two conditions rather than one. The exclusion 
criterion was determined during the course of data col-
lection but before the data were analyzed. Seven subjects 
were excluded because of excessive artifacts, which left 
a total of 23 subjects.3 All subjects in the final sample 
provided data for at least 600 trials per search condition 
(M = 772, SD = 79) after artifacts and incorrect responses 
were discarded.

Apparatus and stimuli

We tested the subjects in a dimly lit, electrically shielded 
chamber. Stimuli were generated using MATLAB (The 
Mathworks, Natick, MA) and the Psychophysics Toolbox 
(Brainard, 1997; Pelli, 1997) and were presented on a 
17-in. CRT monitor (refresh rate = 60 Hz) at a viewing 
distance of approximately 100 cm. Stimuli were rendered 
in dark gray against a medium-gray background.

Procedure

After providing informed consent, the subjects were fit-
ted with a cap embedded with 20 scalp electrodes before 
completing the experimental task. Including preparation 
time and experimental time, Experiment 1 took approxi-
mately 3 hr to complete, and Experiment 2 took approxi-
mately 3.5 hr to complete.

Experiment 1: spatial-cuing task. Subjects in Experi-
ment 1 completed a spatial-cuing task in which they were 
required to identify a target digit among distractor letters 
(Fig. 2a). Subjects initiated each trial by pressing the space 
bar. Each trial began with a central fixation point (0.24° in 
diameter), surrounded by equally spaced placeholder 
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Fig. 1. Illustration of the inverted encoding method for reconstructing spatial channel-tuning functions (CTFs) from the pattern of 
alpha-band power across the scalp. We modeled alpha power measured at each electrode as the weighted sum of eight spatially 
tuned channels (C1–C8). Each curve in (a) shows the predicted response of one of the channels across eight possible attended angu-
lar locations (the locations shown here were used in Experiment 1; in Experiment 2, we used 22.5°, 67.5°, 112.5°, etc.). The gray 
circles on the right indicate how locations were labeled. In the training phase (b), we used predicted channel responses to estimate 
a set of channel weights that characterized the relative contribution of each of the spatial channels to the response measured at 
each of the scalp electrodes. The example shown here is for an attended location at 45°. In the test phase (c), using an independent 
set of data, we used the channel weights determined from the training data to estimate the channel responses from the observed 
pattern of alpha power on the scalp. The resulting CTF reflects the spatial selectivity of population-level alpha power, as measured 
by electroencephalography (EEG). The example shown here is for an attended location at 135°. For more details, see the Inverted 
Encoding Model section.

rings (1.7° in diameter, with a border of 0.08°). Each 
placeholder was centered 2.4° from the fixation point. 
The exact angular position of the placeholders were jit-
tered on each trial within a 45° wedge. Thus, the position 
of the first placeholder varied between −22.5° and 22.5°, 

the second varied between 22.5° and 67.5°, and so on. 
This jitter was not necessary for the IEM analysis.

After a variable interval between 800 and 1,500 ms, a 
central cue (87.5% valid), presented for 250 ms, indicated 
the likely location of a subsequent target. The cue was a 
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Fig. 2. Task and results from Experiment 1. In the spatial-cuing task (a), a central cross (cue) with three arms of one color and one arm of a dif-
ferent color directed the subjects to attend one of eight placeholders. After a 1,000-ms delay, the target digit was displayed among distractor letters 
and then masked with a pound sign. The graph in (b) shows target-discrimination accuracy (proportion correct) separately for trials with valid 
and invalid cues. The top graph in (c) shows the average alpha-band channel-tuning function (CTF) across time for all eight locations. The yellow 
band shows the peak channel response. The eight graphs below that show the average CTF for each of the eight cued locations separately. In 
(d), the graph shows the average slope of the alpha-band CTF as a function of time. The red marker indicates the area of reliable CTF selectivity. 
The shaded areas indicate ±1 bootstrapped SEM. The graphs in (e) show the channel-response profile recovered using the standard graded basis 
function (left) and a nongraded basis function (right). The shaded areas indicate ±1 bootstrapped SEM. The slopes of the CTFs reconstructed from 
the topographic distribution of oscillatory power across a broad range of frequencies (4–50 Hz, in increments of 1 Hz) are plotted in (f). Points at 
which the CTF slope was not reliably above zero as determined by a permutation test are set to zero (dark blue).
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small cross (0.6° wide; arms were 0.08° thick) with three 
green arms and one blue arm (or vice versa, counterbal-
anced across subjects). The uniquely colored arm of the 
cue pointed toward the cued placeholder. In a target dis-
play presented 1,250 ms after cue onset, each placeholder 
was occupied by a letter or digit. The display included 
one target (a digit between 1 and 9) among distractors 
(uppercase letters). Digits and letters were approximately 
0.9° tall and 0.8° wide. The distractor letters were ran-
domly selected without replacement from all possible let-
ters (except for “I,” “S,” and “Z” because of their similarity 
to the digits “1,” “5,” and “2,” respectively). The target was 
backward-masked with a pound symbol (“#”) presented 
for 400 ms. Following the mask, the subjects reported the 
target identity using the number pad on a standard key-
board; there was no time limit. The reported digit 
appeared ~1° above the fixation point, and the subjects 
could correct their response if they pressed a wrong key. 
Finally, the subjects confirmed their response by pressing 
the space bar.

To encourage the subjects to attend the cued location 
in advance of the target display, we adjusted the duration 
of the target display for each subject using a staircase 
procedure. Subjects completed one or two blocks (72 tri-
als per block) of this procedure at the start of the session. 
During the staircase procedure, the cue was valid on all 
trials, and the subjects were instructed to attend the cued 
location. Exposure duration was decreased by 16.7 ms 
(i.e., one refresh cycle at 60 Hz) when the subjects made 
a correct response or increased by 33.3 ms (i.e., two 
refresh cycles at 60 Hz) when the subjects made an incor-
rect response, until performance reached an asymptote. 
The resulting duration of the target display varied 
between 33.3 ms and 66.7 ms across subjects. This stair-
case procedure was somewhat coarse because changing 
exposure duration by 16.7 ms had a considerable effect 
on task difficulty. Nevertheless, this procedure ensured 
that target identification was adequately difficult for all 
the subjects: Target identification accuracy ranged be- 
tween 65.7% and 97.0% (M = 83.5%, SD = 9.5) on trials 
with valid cues, and all subjects showed a large spatial-
cuing effect, which ranged between 26.6% and 69.8% 
(M = 46.6%, SD = 13.0).

After the staircase procedure, the subjects completed 
as many blocks of the spatial-cuing task as time permit-
ted, but the goal was 20 blocks. Each block contained 72 
trials, and all subjects completed at least 13 blocks. Each 
of the eight placeholders was cued equally often within 
each block of trials.

Experiment 2: visual search task. Subjects in Experi-
ment 2 performed a visual search task in which they 
searched for a target (a vertical or horizontal bar) among 
distractors (Fig. 3a). Each item in the search display 

consisted of a dark gray bar (1.5° × 0.2°) superimposed on 
a gray circle (2.1° in diameter). The items were equally 
spaced in a circle around a dark gray fixation point (0.2° 
in diameter). Each item was centered 3° from the fixation 
point. Stimulus positions were not jittered in Experiment 2.

We varied the difficulty of visual search by manipulat-
ing both distractor variability (i.e., distractor orientation 
was uniform or varied) and target-distractor similarity 
(i.e., the extent to which the distractors resembled the 
target). In the easy-search condition, all distractors were 
identical and were rotated 45° clockwise or counter 
clockwise from the possible target orientations (Fig. 3a). 
Thus, distractor variability and target-distractor similarity 
were low. In the hard-search condition, the distractors 
were heterogeneous and were rotated 22.5° from the 
possible target orientations (Fig. 3a). Thus, distractor vari-
ability and target-distractor similarity were higher than in 
the easy-search condition, resulting in a more difficult 
search (Duncan & Humphreys, 1989).

Each search array was presented for 2 s, separated by 
a variable intertrial interval between 1.8 and 2.3 s, during 
which only the fixation point remained visible. Subjects 
reported whether the target was vertical or horizontal by 
pressing the “z” key (left index finger) or “/” key (right 
index finger), respectively. Subjects were instructed to 
respond as quickly and as accurately as possible. Feed-
back (mean response time, or RT, and accuracy) was pro-
vided at the end of each block of trials. To minimize 
artifacts during the stimulus display and a 300-ms pre-
stimulus baseline period, the subjects were instructed to 
maintain fixation throughout each block of the search 
task and to blink (if necessary) immediately after the off-
set of the search array.

The subjects completed 30 blocks of 64 trials each. 
The search conditions (easy or hard) were blocked, and 
the blocks alternated between conditions. The order of 
the conditions (easy first or hard first) was counterbal-
anced across subjects. Before beginning the session, the 
subjects completed two blocks of practice trials (easy 
search followed by hard search).

The subjects also completed a short practice session 
the day before the EEG session to familiarize themselves 
with the visual search task. During this session, the sub-
jects completed three blocks of the easy-search condition 
followed by three blocks of the hard-search condition.

Electrophysiology

EEG was recorded using 20 tin electrodes mounted in an 
elastic cap (Electro-Cap International, Eaton, OH). We 
recorded from International 10/20 sites F3, FZ, F4, T3, C3, 
CZ, C4, T4, P3, PZ, P4, T5, T6, O1, and O2, along with 
five nonstandard sites: OL midway between T5 and O1, 
OR midway between T6 and O2, PO3 midway between 
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of the average target-related alpha-band channel-tuning function (CTF) across time, collapsed across the search conditions (easy and hard). Time 
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P3 and OL, PO4 midway between P4 and OR, and POz 
midway between PO3 and PO4. All sites were recorded 
with the left mastoid as a reference; they were rerefer-
enced off-line to the algebraic average of the left and right 
mastoids. To detect horizontal eye movements, we used 
horizontal electrooculography (EOG) recorded from 
electrodes placed approximately 1 cm from the external 
canthus of each eye. To detect blinks and vertical eye 

movements, we recorded vertical EOG from an electrode 
placed below the right eye and referenced to the left 
mastoid. The EEG and EOG were amplified using an SA 
Instrumentation (San Diego, CA) amplifier with a band-
pass filter of 0.01 to 80 Hz and were digitized at 250 Hz 
using LabVIEW 6.1 (National Instruments, Austin, TX) run-
ning on a PC. Trials were visually inspected for artifacts, 
and we discarded trials (both EEG and behavioral data) 
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contaminated by blocking (i.e., amplifier saturation), blinks, 
detectable eye movements, excessive muscle noise, or skin 
potentials. Removal of ocular artifacts was effective: Varia-
tion in the grand-averaged horizontal EOG waveforms by 
cued and target locations was less than 3 µV. Given that eye 
movements of about 1° of visual angle produce a deflec-
tion in the horizontal EOG of approximately 16 µV (Lins, 
Picton, Berg, & Scherg, 1993), the residual variation in the 
average horizontal EOG corresponds to variations in eye 
position of less than 0.2° of visual angle (i.e., smaller than 
the size of the fixation point).

Time-frequency analysis

Time-frequency analyses were performed using the Sig-
nal Processing toolbox and EEGLAB toolbox (Delorme & 
Makeig, 2004) for MATLAB (The Mathworks, Natick, MA). 
To isolate frequency-specific activity, we band-pass- 
filtered the raw EEG signal using a two-way least-squares 
finite-impulse-response filter (“eegfilt.m” from EEGLAB 
Toolbox; Delorme & Makeig, 2004). This filtering method 
uses a zero-phase forward and reverse operation, which 
ensures that phase values are not distorted, as can occur 
with forward-only filtering methods. A Hilbert transform 
(MATLAB Signal Processing Toolbox) was applied to the 
band-pass-filtered data, producing the complex analytic 
signal, z(t), of the filtered EEG, f (t):

z t f t if t( ) = ( ) + ( )∼
,

where if t
∼( ) is the Hilbert transform of f (t), and i = −1. 

The complex analytic signal was extracted for each elec-
trode using the following MATLAB syntax:

hilbert eegfilt data F f1 f2, , , ’ ’( )( )

In this syntax, data is a 2-D matrix of raw EEG (number 
of trials × number of samples), F is the sampling fre-
quency (250 Hz), f 1 is the lower bound of the filtered 
frequency band, and f 2 is the upper bound of the filtered 
frequency band. For alpha-band analyses, we used an 8- 
to 12-Hz band-pass filter; thus, f 1 and f 2 were 8 and 12, 
respectively. For the time-frequency analysis, we searched 
a broad range of frequencies (4–50 Hz, in increments of 
1 Hz with a 1-Hz band pass). For these analyses, f 1 and 
f 2 were 4 and 5 to isolate 4- to 5-Hz activity, 5 and 6 to 
isolate 5- to 6-Hz activity, and so forth. Instantaneous 
power was computed by squaring the complex magni-
tude of the complex analytic signal.

Inverted encoding model

In keeping with our previous work on spatial working 
memory (Foster et  al., 2016), we used an IEM to 

reconstruct location-selective CTFs from the topographic 
distribution of oscillatory power across electrodes. We 
assumed that power measured at each electrode reflected 
the weighted sum of eight spatial channels (i.e., neuronal 
populations), each tuned for a different angular location 
(see Brouwer & Heeger, 2009; Sprague & Serences, 2013). 
We modeled the response profile of each spatial channel 
across angular locations as a half sinusoid raised to the 
seventh power:

R = sin( . ) ,0 5 7θ

where θ is angular location (ranging from 0° to 359°) and 
R is the response of the spatial channel in arbitrary units. 
This response profile was shifted circularly for each chan-
nel such that the peak response of each spatial channel 
was centered over one of the eight locations (corre-
sponding to the cued locations 0°, 45°, 90°, etc., for 
Experiment 1 and the target locations 22.5°, 67.5°, 112.5°, 
etc., for Experiment 2; see Fig. 1a).

An IEM routine was applied to each time point in the 
alpha-band analyses and each time-frequency point in 
the time-frequency analysis.4 We partitioned our data into 
independent sets of training data and test data (for details, 
see the Training and Test Data section). The routine pro-
ceeded in two stages (training and test). In the training 
stage (Fig. 1b), the training data (B1) were used to esti-
mate weights that approximated the relative contribu-
tions of the eight spatial channels to the observed response 
(i.e., oscillatory power) measured at each electrode. We 
define B1 (m electrodes × n1 measurements) as a matrix 
of the power at each electrode for each measurement in 
the training set, C1 (k channels × n1 measurements) as a 
matrix of the predicted response of each spatial channel 
(specified by the basis function for that channel) for each 
measurement, and W (m electrodes × k channels) as a 
weight matrix that characterizes a linear mapping from 
channel space to electrode space. The relationships 
among B1, C1, and W can be described by a general linear 
model of the following form:

B WC1 1=

The weight matrix was obtained via least squares estima-
tion was as follows:

W BC C CT T
 = ( )−1 1 1 1

1

In the test stage (Fig. 1c), we inverted the model to 
transform the test data, B2 (m electrodes × n2 measure-
ments), into estimated channel responses, C2

 (k channels × 
n2 measurements), using the estimated weight matrix, W, 
that we obtained in the training phase:
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Each estimated channel-response function was circu-
larly shifted to a common center, so that the center chan-
nel was the channel tuned for the cued or target location 
(i.e., 0° on the channel offset axes of Figs. 2c and 2e). We 
then averaged these shifted channel-response functions 
to obtain the CTF averaged across the eight cued (or tar-
get) locations. The IEM routine was performed separately 
for each time point.

Finally, because the exact contributions of the spatial 
channels to electrode responses (i.e., the channel weights, 
W ) were expected to vary by subject, the IEM routine 
was applied separately for each subject, and statistical 
analyses were performed on the reconstructed CTFs. This 
approach allowed us to disregard differences in how 
location-selective activity was mapped to scalp-distributed 
patterns of power across subjects and instead focus on 
the profile of activity in the common stimulus, or infor-
mation, space (Foster et al., 2016; Sprague et al., 2015).

Training and test data

For the IEM procedure, we partitioned artifact-free trials 
for each subject into independent sets of training data 
and test data. Specifically, we divided the trials into three 
sets. For each of these sets, we averaged power across 
trials for each cued location (Experiment 1) or target 
location (Experiment 2), which resulted in three 20 (elec-
trodes) × 8 (locations) matrices of power values, one for 
each set. We used a leave-one-out cross-validation rou-
tine such that two of these matrices served as the training 
data (B1, 20 electrodes × 16 measurements), and the 
remaining matrix served as the test data (B2, 20 elec-
trodes × 8 measurements). Because no trial belonged to 
more than one of the three sets, the training and test data 
were always independent. We applied the IEM routine 
using each of the three matrices as the test data, and the 
remaining two matrices as the training data. The resulting 
CTFs were averaged across the three test sets.

When we partitioned the trials into three sets, we con-
strained the assignment of trials to the sets so that all eight 
locations in all three sets had the same number of trials. 
To that end, we determined the minimum number of trials 
per subject for any location, n, and assigned n/3 trials for 
each location to each set. For example, if n was 100, we 
assigned 33 trials for each location to each set. Because of 
this constraint, some excess trials did not belong to any 
block. In Experiment 2, we compared CTFs across search 
conditions (easy or hard) and across trials with fast and 
slow RTs. To obtain a CTF for each condition separately, 
we partitioned each condition into three sets of data as 

described, which resulted in six sets in total (three for 
each condition). We constrained the assignment of trials 
as in Experiment 1. Note that this ensured that the same 
number of trials was used for each of the conditions.

We used an iterative approach to make use of all avail-
able trials. For each iteration, we randomly partitioned the 
trials into three sets (as just described) and performed the 
IEM routine on the resulting training and test data. We 
repeated this process of partitioning trials into sets multi-
ple times (5 times for the full time-frequency analyses, 10 
times for the alpha-band analyses, and 100 times for the 
latency analyses in Experiment 2). For each iteration, the 
subset of trials that were assigned to blocks was randomly 
selected. Therefore, the trials that were not included in 
any block were different for each iteration. We averaged 
the resulting channel-response profiles across iterations. 
This iterative approach reduced noise in the resulting 
CTFs by minimizing the influence of idiosyncrasies that 
were specific to any given assignment of trials to blocks.

Statistical analysis

Quantifying CTF selectivity. To quantify the location 
selectivity of CTFs, we used linear regression to estimate 
CTF slope (i.e., slope of channel response as a function 
of location channels after collapsing across channels that 
were equidistant from the channel tuned to the location 
of the evoking stimulus). Higher CTF slope indicates 
greater location selectivity.

Permutation test. In Experiment 1, to test whether CTF 
selectivity was reliably above chance, we tested whether 
CTF slope was greater than zero using a one-sample t 
test. Because mean CTF slope may not be normally dis-
tributed under the null hypothesis, we used a Monte 
Carlo randomization procedure to empirically approxi-
mate the null distribution of the t statistic. Specifically, we 
implemented the IEM as described earlier but random-
ized the location labels within each block so that the 
labels were random with respect to the observed responses 
in each electrode. This randomization procedure was 
repeated 1,000 times to obtain a null distribution of  
t statistics. To test whether the observed CTF selectivity 
was reliably above chance, we calculated the probability 
of obtaining (from the surrogate null distribution) a t sta-
tistic that was greater than or equal to the observed  
t statistic (i.e., the probability of a Type I error). Our per-
mutation test was therefore a one-tailed test. CTF selec-
tivity was deemed reliably above chance if the probability 
of a Type I error was less than .01. This testing procedure 
was applied to each time-frequency point in the time-
frequency analyses and to each time point in the alpha-
band analyses.
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Jackknife test for latency differences. In Experiment 
2, we tested for differences in CTF onset latency between 
easy-search and hard-search trials and between trials 
with fast RTs and trials with slow RTs. We used a jack-
knife-based procedure (Miller, Patterson, & Ulrich, 1998) 
to test for latency difference in CTF onset. CTF onset 
latency was measured as the earliest time at which CTF 
slope reached 50% of its maximum amplitude. The 
latency difference between conditions, D, was measured 
as the difference in onset latency between conditions in 
the time courses of the CTF slopes averaged across sub-
jects. We used a jackknife procedure (Miller et al., 1998) 
to estimate the standard error of the latency difference, 
SED, from the latency differences obtained for subsam-
ples that included all but one subject. Specifically, the 
latency differences, D–i (for i = 1, . . ., N, where N is the 
sample size), were calculated where D–i was the latency 
difference for the sample with all subjects except for sub-
ject i. The jackknife estimate of the SED was calculated as

SE
N

N
D JD i

N
=

−
−( )−=∑1 2

1 i ,

where J  is the mean of the differences obtained for all 

subsamples (i.e., J D Ni= −∑ / ).

A jackknifed t statistic, tj, was then calculated as

t
D

SED
j = ,

which follows an approximate t distribution with N – 1 
degrees of freedom under the null hypothesis. Our jack-
knife tests for latency differences in CTF onsets were 
one-tailed because we had clear directional hypotheses: 
that CTF onset would be delayed for hard search com-
pared with easy search and for trials with slow RTs com-
pared with trials with fast RTs. The jackknife approach to 
testing for latency differences between conditions cir-
cumvents the need to calculate latency differences for 
individual subjects, which are often noisy because of the 
low signal-to-noise ratio of EEG data (Miller et al., 1998).

Experiment 1

Subjects in Experiment 1 performed a spatial-cuing task 
in which they identified a target digit among distractor 
letters (Fig. 2a). A central cue indicated the likely location 
of the target (valid on 87.5% of trials). We observed a 
robust spatial-cuing effect in the accuracy of target dis-
crimination (Fig. 2b): Target-discrimination accuracy was 
higher on trials with a valid cue (M = 83.5%, SD = 9.5) 

than on those with an invalid cue (M = 36.9%, SD = 18.2), 
t(15) = 14.33, p < .001, Cohen’s dz = 3.58.

Having established that the subjects attended the cued 
location, we tested whether the topography of alpha-
band activity tracked shifts of covert attention to the cued 
location (collapsing across trials with valid and invalid 
cues). Using an IEM, we reconstructed spatial CTFs from 
the scalp distribution of alpha power. A spatially selective 
CTF emerged several hundred milliseconds after cue 
onset and was sustained until the search array was pre-
sented (Fig. 2c, top). Figure 2d shows CTF selectivity 
across time (quantified as CTF slope; see General Method). 
A permutation test revealed that CTF selectivity was reli-
ably above chance beginning 304 ms after cue onset. 
Therefore, covert attention must have been shifted to the 
cued location by this time at the latest. The time course 
of the attention-related CTF dovetails with past behav-
ioral work, which has shown that endogenously cued 
shifts of attention typically take 200 to 400 milliseconds 
to execute (Cheal & Lyon, 1991; Eriksen & Collins, 1969; 
Liu, Stevens, & Carrasco, 2007; H. J. Müller & Rabbitt, 
1998; Nakayama & Mackeben, 1989; for review, see Egeth 
& Yantis, 1997).

Next, we examined whether alpha-band activity 
tracked the specific location that was attended. The 
alpha-band CTFs that we have reported so far reflected 
channel response profiles that were averaged across all 
possible cued locations. We did observe reliable spatial 
selectivity in the averaged CTF. Nevertheless, it is possi-
ble that the spatial selectivity of the averaged CTF reflects 
selectivity for some locations but not others, which leads 
to reliable spatial selectivity on average (Foster et  al., 
2016). Thus, we inspected the alpha-band CTFs for each 
cued location separately (Fig. 2c, bottom). For each loca-
tion, the CTF peaked at the channel tuned for the cued 
location (i.e., a channel offset of 0°) starting approxi-
mately 300 ms after cue onset, which demonstrated that 
time-resolved alpha-band CTFs tracked which of the 
eight locations was attended. Thus, alpha-band activity 
tracks the locus of covert attention in a spatially precise 
fashion.

Alpha-band CTFs showed a graded response profile: 
The strongest response was in the channel tuned for the 
cued location, and responses steadily decreased across 
channels tuned for other locations (Fig. 2e, left). How-
ever, our standard set of basis functions (the basis set) 
specified a graded channel-response profile across loca-
tions. Therefore, the graded profile of alpha-band CTFs 
might be imposed by the graded basis function rather 
than reflecting truly graded spatially selective activity. To 
test this possibility, we reconstructed CTFs with the IEM 
again, with a basis set of Kronecker delta functions (stick 
functions; Foster et al., 2016). These basis functions do 
not specify a graded channel-response profile. Thus, a 
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graded CTF profile seen when using this modified basis 
set necessarily reflects graded activity in the data itself 
rather than a pattern imposed by the basis function. 
Alternatively, if spatially selective alpha activity does not 
follow a graded format, then we should recover a peak in 
the channel tuned for the attended location and uniform 
responses across the other channels. Using this modified 
basis set, we found that alpha-band CTFs (averaged from 
300 through 1,250 ms) showed a graded profile across 
channels (Fig. 2e, right), which demonstrated that the 
graded profile of alpha-band CTFs reflects the underlying 
spatial selectivity of covert spatial attention.

Having established that the topographic distribution of 
alpha power tracked the spatial locus of covert attention, 
we tested whether such spatially selective activity was 
specific to the alpha band (8–12 Hz). We used the IEM to 
search a range of frequencies (4–50 Hz, in increments of 
1 Hz) across time to identify the frequency bands in which 
the topographic distribution of power carried information 
about the attended location (Fig. 2f). We found that spa-
tially selective oscillatory activity was largely restricted to 
the alpha band.

Experiment 2

In Experiment 1, we showed that spatially selective CTFs 
can be reconstructed from the topographic distribution 
of alpha power after a central, attention-directing cue. 
This spatially selective activity emerged several hundred 
milliseconds after cue onset, so that it dovetailed with 
behavioral estimates of the time course of endogenous 
shifts of spatial attention (e.g., H. J. Müller & Rabbitt, 
1998). Although this finding suggests that alpha-band 
CTFs track spatial attention in a temporally resolved fash-
ion, a direct test requires a manipulation of covert orient-
ing speed. Thus, in Experiment 2, we manipulated the 
speed of target selection during visual search. Subjects 
performed a visual search task in which they searched 
for a target (a horizontal or vertical bar) among distractors 
(Fig. 3a). We varied the difficulty of search by manipulat-
ing both distractor variability and target-distractor similar-
ity (Duncan & Humphreys, 1989), and we measured 
reaction time to obtain a trial-by-trial estimate of the time 
taken to attend the target. This approach allowed us to 
test whether the time course of alpha-based CTFs tracked 
differences in the latency of target selection across differ-
ent levels of search difficulty and as a function of within-
subject differences in orienting latency across trials.

Figure 3b shows the aggregate RT distributions for 
easy and hard search. Our manipulation of search diffi-
culty was effective: Median RTs were slower for hard 
search (M = 829 ms, SD = 153) than for easy search (M = 
593 ms, SD = 71), t(22) = 12.31, p < .001, Cohen’s dz = 
2.57, and accuracy was lower for hard search (M = 91.7%, 

SD = 4.4) than for easy search (M = 97.0%, SD = 2.4), 
t(22) = 6.09, p < .001, Cohen’s dz = 1.27. We first tested 
whether alpha-band CTFs tracked orienting to the target 
location during the visual search task. As in Experiment 
1, we quantified the spatial selectivity of alpha-band CTFs 
as CTF slope (see General Method). A spatially selective 
alpha-band CTF emerged soon after onset of the search 
array (Fig. 3c). A permutation test revealed that CTF 
selectivity was reliably above chance starting 196 ms after 
cue onset. Thus, alpha-band CTFs tracked covert orient-
ing to the target’s location during visual search. To test 
whether alpha-band CTFs track the latency of covert ori-
enting to the search target, we compared the onset 
latency of target-related CTFs between the easy- and 
hard-search conditions. To measure the difference in 
onset latency of target-related CTF between the search 
conditions, we used a jackknife-based procedure with a 
50% maximum amplitude criterion (Miller et al., 1998; see 
General Method). The filled circles in Figure 3d mark the 
CTF onset estimates during easy and hard search. We 
found that the target-related CTF onset was 440 ms later 
for hard-search trials than for easy-search trials, t(22) = 
2.48, p = .011, Cohen’s dz = 0.52 (one-tailed test). Thus, 
the onset latency of the target-related CTF was delayed in 
hard search compared with easy search, which demon-
strated that alpha-based CTFs revealed the difference in 
the latency of orienting attention to the target between 
the search conditions.

Although RTs were generally slower for the hard-
search condition than for the easy-search condition, there 
was also considerable overlap in RTs between the easy- 
and hard-search conditions (Fig. 3b). This overlap was 
expected because target selection should sometimes 
occur very quickly during hard search, when the target 
happens to be one of the initial items to be selected. 
Given the overlap in RTs between conditions, we exam-
ined the onset latency of target-related CTFs split by RT, 
comparing the 50% of trials with the fastest RTs (fast tri-
als) with the 50% of trials with the slowest RTs (slow tri-
als), regardless of search condition (Fig. 3e). If alpha-band 
CTFs reveal the latency of target selection, CTF latency 
should covary with trial-by-trial reaction times. Indeed, 
we found that the target-related CTF onset was 372 ms 
later for slow trials than for fast trials, t(22) = 7.22, p < 
.001, Cohen’s dz = 1.51 (one-tailed test), which provides 
further evidence that the onset of target-related CTFs 
tracks the latency of covert orienting to the target item 
during visual search.

Discussion

The central role of covert spatial attention in visual cogni-
tion has motivated a sustained effort to elucidate the neu-
ral mechanisms that underpin this process. One productive 
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avenue has been to examine the links between oscilla-
tory alpha-band activity and spatial attention. A growing 
body of evidence has shown that the topographic distri-
bution of alpha power tracks the locus of spatial atten-
tion (e.g., Kelly et al., 2006; Rihs et al., 2007; Thut et al., 
2006; Worden et  al., 2000), which suggests that alpha 
oscillations play a role in biasing visual processing toward 
attended locations (Foxe & Snyder, 2011; Jensen & Maza-
heri, 2010). According to this view, the topographic dis-
tribution of alpha power should track the temporal 
dynamics of covert spatial attention. However, this pre-
diction has not previously been subjected to a rigorous 
test.

Our findings provide a compelling confirmation of 
this prediction. In Experiment 1, we showed that varia-
tions in scalp distribution of alpha power enabled the 
reconstruction of spatially specific response profiles (i.e., 
CTFs) that track the endogenous orienting of spatial 
attention after a central cue. These alpha-band CTFs pre-
cisely discriminated the attended position beginning 
approximately 300 ms after the onset of the central cue, 
consistent with past estimates of the time taken to endog-
enously shift attention (e.g., H. J. Müller & Rabbitt, 1998; 
Nakayama & Mackeben, 1989; for review, see Egeth & 
Yantis, 1997). Critically, Experiment 2 extended this find-
ing by showing that dynamic changes in alpha topogra-
phy tracked the latency of covert orienting during visual 
search. The onset of alpha-band CTFs was delayed dur-
ing difficult search compared with easy search and for 
trials with slow responses compared with trials with fast 
responses. Together these findings demonstrate that 
moment-by-moment changes in the topography of 
alpha-band activity track the temporal dynamics of 
covert spatial attention, which closes a significant gap in 
the evidence linking alpha activity with covert spatial 
orienting.

Experiment 2 also provides important evidence that 
spatially specific alpha-band activity plays a role in covert 
spatial attention in a range of paradigms. It has long been 
thought that covert spatial orienting plays a central role 
in visual search (e.g., Kim & Cave, 1995; Luck, Fan, & 
Hillyard, 1993). However, evidence linking alpha-band 
activity to covert orienting during visual search has been 
lacking because studies that have linked alpha-band 
activity with spatial attention have relied almost exclu-
sively on spatial-cuing tasks (e.g., Thut et  al., 2006; 
Worden et al., 2000). Our finding that alpha-band CTFs 
tracked the latency of orienting to a target during visual 
search provides clear evidence for the role of alpha-band 
activity in visual search. Thus, spatially specific alpha-
band activity plays a general role in covert orienting in a 
range of paradigms.

Our findings also have important methodological 
implications for a field that has had a long-standing 

interest in the spatial and temporal dynamics of covert 
orienting (Egeth & Yantis, 1997). Early work relied on 
overt behavioral responses to probe these dynamics (e.g., 
Downing, 1988; H. J. Müller & Rabbitt, 1998). More 
recently, however, neural signals that track the allocation 
of attention have played a central role in this endeavor, in 
part because they circumvent the need for overt behav-
ioral responses. Functional magnetic resonance imaging 
(fMRI) precisely tracks the spatial locus of covert atten-
tion (e.g., Brefczynski & DeYoe, 1999; Tootell et al., 1998) 
but provides little information about the time course of 
attention because of the slow hemodynamic response. 
Thus, researchers have relied on electrophysiological sig-
nals to examine the temporal dynamics of attention (e.g., 
Garcia, Srinivasan, & Serences, 2013; M. M. Müller, Teder-
Sälejärvi, & Hillyard, 1998).

One productive approach has been to measure the 
consequences of spatial attention by examining stimulus-
evoked potentials rather than directly measuring endog-
enous, attention-related activity. Sensory components 
that are amplified by spatial attention (e.g., the P1 
component; Hillyard, Vogel, & Luck, 1998) have allowed 
researchers to probe the spatial allocation of attention. 
For example, Hopfinger and Mangun (1998) showed that 
the P1 response evoked by a probe stimulus was ampli-
fied after an exogenous spatial cue, which means that 
exogenous orienting shapes early stages of visual pro-
cessing. However, although this approach has provided 
important insights into how and when attention modu-
lates evoked visual responses, it does not reveal the time 
course of covert orienting before the evoking stimulus. 
To overcome this limitation, some studies have focused 
on the rhythmic brain activity—called a steady-state visual 
evoked potential—evoked by a flickering stimulus; this 
activity is amplified by spatial attention (Morgan, Hansen, & 
Hillyard, 1996). Thus, by examining the time course of 
amplitude modulations, it has been possible to measure 
the latency of orienting toward a flickering target (e.g.,  
M. M. Müller et al., 1998). Nevertheless, stimulus-evoked 
approaches are not without limitations. Note that because 
these approaches rely on stimulus-evoked activity, they 
cannot be used to track attention to empty locations, 
which restricts the kinds of questions that can be addressed 
with these methods. Thus, there is much to be gained 
from a temporally resolved signal that tracks spatial atten-
tion in the absence stimulus-evoked activity.

Our findings suggest that spatially specific alpha-band 
activity provides such an opportunity. Alpha-band CTFs 
tracked the locus of covert spatial attention in balanced 
visual displays and in the absence of transient evoked 
activity, suggesting that spatially specific alpha-band 
activity reflects endogenous shifts of spatial attention 
rather than stimulus-evoked activity. Thus, given its spa-
tial and temporal precision, this method provides a 
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promising approach for obtaining a moment-by-moment 
index of the locus of covert attention across a broad 
range of paradigms.

Conclusions

In the current study, we showed that the topographic 
distribution of alpha-band activity tracked the spatial 
locus of covert attention after attention-directing cues 
and during visual search. These results demonstrate that 
alpha-band activity plays a central role in covert orienting 
in a range of paradigms. Critically, the time course of 
spatially specific alpha activity tracked trial-by-trial varia-
tions in the speed of covert orienting during visual search. 
Our results provide critical new evidence for the link 
between alpha-band activity and covert spatial attention.
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Notes

1. Three additional volunteers completed the practice session 
for Experiment 2 (see Procedures) but did not return for the 
EEG session.
2. For Experiment 1, our target sample size was 16 subjects, in 
keeping with our previous work using the method we used here to 
track locations held in spatial working memory (Foster et al., 2016).
3. For Experiment 2, our target sample was a minimum of 20 
subjects. Our target sample size was larger for Experiment 2 
than for Experiment 1 because we had not run comparable tests 
for latency differences in previous work. Our lab was soon to 
relocate at the time of data collection. Thus, we continued data 
collection beyond our minimum sample until we no longer had 
access to the apparatus.
4. For the time-frequency analysis, the IEM was applied across 
many frequency bands. To reduce computation time, we down-
sampled power values from 250 Hz to 50 Hz (i.e., one sample 
every 20 ms). We down-sampled power values after filtering 
and applying the Hilbert transform so that down-sampling did 
not affect how power values were obtained.
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