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First published June 12, 2019; doi:10.1152/jn.00268.2019.—A hall-
mark of episodic memory is the phenomenon of mentally reexperi-
encing the details of past events, and a well-established concept is that
the neuronal activity that mediates encoding is reinstated at retrieval.
Evidence for reinstatement has come from multiple modalities, in-
cluding functional magnetic resonance imaging and electroencepha-
lography (EEG). These EEG studies have shed light on the time
course of reinstatement but have been limited to distinguishing be-
tween a few categories. The goal of this work was to use recently
developed experimental and technical approaches, namely continuous
report tasks and inverted encoding models, to determine which fre-
quencies of oscillatory brain activity support the retrieval of precise
spatial memories. In experiment 1, we establish that an inverted
encoding model applied to multivariate alpha topography tracks the
retrieval of precise spatial memories. In experiment 2, we demonstrate
that the frequencies and patterns of multivariate activity at study are
similar to the frequencies and patterns observed during retrieval.
These findings highlight the broad potential for using encoding
models to characterize long-term memory retrieval.

NEW & NOTEWORTHY Previous EEG work has shown that
category-level information observed during encoding is recapitulated
during memory retrieval, but studies with this time-resolved method
have not demonstrated the reinstatement of feature-specific patterns of
neural activity during retrieval. Here we show that EEG alpha-band
activity tracks the retrieval of spatial representations from long-term
memory. Moreover, we find considerable overlap between the fre-
quencies and patterns of activity that track spatial memories during
initial study and at retrieval.

alpha; EEG; inverted encoding model; memory precision; spatial
memory

INTRODUCTION

The retrieval of episodic memories is defined by the phe-
nomenon of reexperiencing the details of past events and is
supported by reinstatement, the reactivation of neural activity
that was present at encoding. Considerable support for this

view has come from functional magnetic resonance imaging
(fMRI) studies, which have shown that sensory regions in-
volved in the initial processing of information are reengaged at
retrieval (Danker and Anderson 2010; Wagner et al. 2005;
Wheeler et al. 2000). Furthermore, voxelwise patterns of ac-
tivity within these regions during memory retrieval resemble
activity seen during encoding (Bosch et al. 2014; Hindy et al.
2016; Polyn et al. 2005; Ritchey et al. 2013). Recent work has
shown that reinstatement is evident in more time-resolved
measures of neural activity, such as electroencephalography
(EEG) and magnetoencephalography (MEG), providing an
important complement to fMRI decoding because it reveals the
temporal dynamics of retrieval. However, although EEG en-
ables temporally resolved tracking of retrieved information, it
has been limited to decoding coarse information, such as the
category of a retrieved paired associated or the task performed
at encoding (Jafarpour et al. 2014; Johnson et al. 2015; Morton
et al. 2013; Waldhauser et al. 2016; Wimber et al. 2012). Thus,
it remains to be seen whether EEG activity enables temporally
resolved tracking of the retrieval of precise visual feature
values that are associated with specific items.

Here, we measured EEG activity during the encoding and
recall of precise spatial locations from long-term memory
(LTM) and applied an inverted encoding model (IEM) to the
topography of oscillatory activity on the scalp. IEMs have
provided a useful approach for reconstructing precise spatial
representations from fMRI and EEG activity (Foster et al.
2016, 2017b; Sprague and Serences 2013; Sprague et al. 2014,
2016). Thus, we expected that IEMs might also prove an
effective tool for tracking the retrieval of precise spatial mem-
ories. Critically, this approach also allowed us to test another
open question: What frequency bands carry spatial information
retrieved from LTM?

On the one hand, theories about the role of rhythmic oscil-
lations in memory have proposed that the same frequencies of
oscillations coordinate specific cognitive operations at encod-
ing and retrieval (Siegel et al. 2012; Watrous and Ekstrom
2014; Watrous et al. 2015). Previous work using an IEM
applied to alpha-band EEG activity, has successfully tracked
covert spatial attention (Foster et al. 2017b), and spatial rep-
resentations maintained in working memory (Foster et al. 2016,
2017a; Sutterer et al. 2019), which leads to the prediction that
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alpha-band activity should also represent spatial locations re-
trieved from LTM. In line with this view, alpha-band activity
has been shown to track hemifield-specific memory-guided
attention (Stokes et al. 2012) and memory retrieval (Wald-
hauser et al. 2016), and the magnitude of alpha desynchroni-
zation tracks the number of items recalled from LTM (Fukuda
and Woodman 2017).

On the other hand, other frequency bands, especially theta
and beta, are known to play important roles in long-term
memory encoding and retrieval (Hsieh and Ranganath 2014;
Kerren et al. 2018; Morton and Polyn 2017; Morton et al. 2013;
Nyhus and Curran 2010) and spatial navigation (Bohbot et al.
2017; Watrous et al. 2011). Moreover, recent fMRI studies
have provided evidence that the constellations of cortical
regions engaged (Xiao et al. 2017) and the strength of memory
representations across regions (Favila et al. 2018) are not
identical during encoding and memory retrieval raising the
possibility that the frequency of oscillations representing in-
formation during encoding and retrieval might also vary. Thus,
we investigated which frequency bands carry spatial informa-
tion retrieved from LTM.

In two experiments, participants learned to associate objects
with specific angular locations. Then, they were asked to
precisely report the associated location when presented with an
object cue. The IEM analysis revealed that oscillatory activity
tracked the precise spatial position that was retrieved from
LTM. Consistent with oscillatory reinstatement accounts, we
found that spatially specific patterns of activity were largely
restricted to the alpha band, the same frequency band that
represents spatial locations held in working memory (WM)
(Foster et al. 2016; Sutterer et al. 2019). Moreover, the alpha-
band patterns observed during retrieval matched those ob-
served during the initial encoding of the objects, in line with
the hypothesis that encoding-related activity was reinstated
during retrieval from LTM. Finally, the selectivity of alpha-
band activity tracked memory performance as learning pro-
gressed from the first to second half of the session as well as
the latency with which participants reported the target loca-
tions. Together these findings suggest that LTM retrieval elicits
reinstatement of the spatially specific oscillatory activity that is
observed during encoding, and that multivariate analysis of
alpha-band activity provides a powerful measure of the timing
and success of this basic cognitive process.

MATERIALS AND METHODS

Participants. Sixty-nine adults (33 in experiment 1, and 36 in
experiment 2; 18–35 yr old, 38 female) participated in the study for
monetary compensation ($10 per hour in experiment 1, and $15 per
hour in experiment 2). All participants reported normal or corrected-
to-normal vision and provided written, informed consent; the study
protocol was approved by the University of Oregon Institutional
Review Board (experiment 1) and the University of Chicago Institu-
tional Review Board (experiment 2).

Participant exclusions for experiment 1. For experiment 1, partic-
ipants were excluded for poor performance on the task and excessive
EEG artifacts. One participant did not return for the second day of the
experiment. One participant was excluded for poor performance on
the first day (86.1° average response error across all day 1 tests) and
data collection was terminated for one participant during the session
for excessive artifacts. In addition, participants were excluded from
further analysis if they had insufficient artifact-free trials (�550
trials). Artifact number exclusion criteria were set during data collec-

tion, but before the data were analyzed. Three participants were
excluded due to excessive EEG artifacts. In the final sample, there
were 27 participants in experiment 1 (mean number of artifact-free
trials � 799, SD � 85).

Participant exclusions for experiment 2. For experiment 2, our
target final sample size was 24 subjects. Participants were replaced for
poor task performance or if too many trials were lost due to recording
or ocular artifacts. One participant was excluded for poor performance
on LTM trials (87.1° average response error across all retrieval tests),
and data collection was terminated for three participants during the
session for excessive artifacts. In addition, participants were excluded
from further analysis if they had insufficient artifact-free trials (�450
trials for encoding or retrieval). Artifact number exclusion criteria
were set during data collection, but before the data were analyzed. We
relaxed the exclusion criterion in experiment 2 because we obtained
fewer trials per condition. Eight participants were excluded due to
excessive EEG artifacts. In the final sample there were 24 participants
in experiment 2 (mean number of artifact-free encoding trials � 535,
SD � 46 and recall trials � 545, SD � 39).

Apparatus. Stimuli were presented in MATLAB using Psychtool-
box (Brainard 1997; Pelli 1997) and were presented on a 17-in. CRT
monitor (60 Hz) for experiment 1 and on a 24-in. LCD monitor (120
Hz) for experiment 2.

Experiment 1 task procedure. The experiment comprised two
sessions run on consecutive days (Fig. 1A). On day 1, participants
were instructed to learn 120 object-location associations (see Fig. 1A
for example clip art) as accurately as possible for the test the next day.
On day 2, participants were cued with the object and asked to recall
and report the associated location while we recorded EEG data.

On day 1, all 120 object-location pairings were studied over three
repetitions with interleaved retrieval practice. Each of these repeti-
tions were randomly divided into 12 “miniblocks,” in which 10
objects were presented followed by a final test on all objects in a
random order. Specifically, 10 objects were serially presented in their
respective spatial locations (1,000 ms per object, each object initiated
by pressing spacebar). Next, each of the 10 objects were presented at
fixation in a random order (1,000 ms per object), and participants
clicked that object’s location along a ring (unspeeded). Recall perfor-
mance was assessed by calculating the response error (i.e., difference
between the presented and reported location, ranging between –180
and 180°). After each response, participants were presented with the
object in its correct location and the response error (500 ms). After
completing these miniblocks, participants again retrieved all 120
objects in a random order. One participant did not complete the final
retrieval on the third run, and one participant accidentally aborted the
experiment during the presentation of the first 10 objects before
completing the rest of the session.

On day 2, participants repeatedly retrieved the location of all 120
objects while we recorded EEG activity (Fig. 1A). During each
repetition (7–8 in total), the objects were presented in a random order.
Each retrieval trial was initiated by a space press. After a variable
interval of 1,100 to 1,500 ms, an object was presented at fixation along
with the response ring. Participants were instructed to maintain
fixation and to avoid blinking or moving the mouse from trial
initiation until the cursor appeared 1,250 ms after the onset of the
memory cue. Participants were also instructed to recall the location
during the retrieval delay (1,250 ms). After each response, participants
were shown the correct location of the item along with a number
denoting the magnitude of the error.

Experiment 2 task procedure. Experiment 2 was designed to ex-
amine encoding-retrieval similarity within a single session. As such,
the experiment was modified to take place within 1 day by reducing
the total number of objects (80 versus 120). Participants were in-
structed to learn object-location associations as accurately as possible
and that they would alternate between studying and being tested on
these associations (Fig. 1C).
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During the study session, participants studied and then recalled
each item during each trial. Each study trial was initiated by a space
press. After a variable interval of 500 to 800 ms, an object was
centrally presented (Fig. 1C) along with a dot at the paired location
(500-ms stimuli) followed by a blank delay (1,250 ms). To prevent
participants from using a part of the object as a reference to remember
the associated location, we randomly varied the orientation of each
object (�45 to 45°) for each presentation. As in experiment 1,
participants then reported the to-be-remembered location by clicking
on the response ring (unspeeded). Participants were instructed to click
with the left mouse button if they were confident in their response, and
to click with the right mouse button if they felt that they were
guessing. Both confident and guess responses were used for subse-
quent analyses. After each response, participants were shown the
correct location of the item along with a number denoting the
magnitude of the error. After studying all 80 objects, participants
underwent another retrieval test for all objects in a random order (Fig.
1C). The only difference between study and recall trials was the
presence of the peripheral dot.

Stimuli. In experiment 1, 120 clip art objects (e.g., animals, plants,
objects) were selected from the Sutterer and Awh (2016) clip art
library. All objects were randomly assigned to unique angular loca-
tions (0–360°, 3° steps) for each participant. On day 1, the viewing
distance was ~80 cm (1.9° stimuli, 5° response ring, 0.3° fixation dot).
On day 2, the viewing distance was ~100 cm (1.5° stimuli, 4° response
ring, 0.25° fixation dot). The background of the screen was medium
gray, all objects appeared in the color cyan, the response ring was dark
gray, and the fixation dot was rendered in black.

In experiment 2, 80 of the objects from experiment 1 were ran-
domly paired with a unique location drawn from all 360° of possible
locations. To assure that the entire space was used, assignment of
locations was constrained such that an equal number of locations were
drawn without replacement from eight bins each spanning 45° of the
possible space. The viewing distance was ~100 cm (1.2° stimuli, 4°
response ring, 0.25° fixation dot). The background of the screen was

again medium gray, all objects appeared in the color cyan, and the
response ring and the fixation dot were dark gray.

Modeling of response errors. Response error was measured as the
number of degrees between the presented angular location and the
reported angular location. Errors ranged from 0° (a perfect response)
to �180° (a maximally imprecise response). For each run (Fig. 1B),
we calculated the average absolute response error for the artifact-free
trials. Error distributions of this sort have been shown to be well
described by a mixture of a uniform distribution for guesses and a Von
Mises distribution for correct responses (Brady et al. 2013; Zhang and
Luck 2008. We used MemToolbox (Suchow et al. 2013) to calculate
the probability of retrieval (Pmem), precision (SD), and the bias (�) of
each participants responses.

EEG acquisition. In experiment 1, EEG was recorded with 20 tin
electrodes mounted in an elastic cap (Electro-Cap International, Ea-
ton, OH). We recorded from International 10/20 sites F3, FZ, F4, T3,
C3, CZ, C4, T4, P3, PZ, P4, T5, T6, O1, and O2, along with five
nonstandard sites (OL, OR, PO3, PO4, POz). All sites were recorded
with a left-mastoid reference and were rereferenced offline to the
algebraic average of the left and right mastoids. To detect horizontal
eye movements, electrodes were placed ~1 cm from the canthi of each
eye to record horizontal electrooculogram (EOG). To detect blinks
and vertical eye movements, a single electrode was placed under the
center of the right eye and referenced to the left mastoid to record
vertical EOG. The EEG and EOG data were amplified with an SA
Instrumentation amplifier, filtered (0.01–80 Hz), and digitized (250
Hz) using LabVIEW 6.1 running on a PC.

In experiment 2, EEG was recorded from 30 active Ag/AgCl
electrodes (Brain Products actiCHamp, Munich, Germany) mounted
in an elastic cap positioned according to the International 10–20
system Fp1, Fp2, F7, F3, F4, F8, Fz, FC5, FC6, FC1, FC2, C3, C4,
Cz, CP5, CP6, CP1, CP2, P7, P8, P3, P4, Pz, PO7, PO8, PO3, PO4,
O1, O2, Oz. A ground electrode was placed in the elastic cap at
position FPz. Data were referenced online to the right mastoid and
rereferenced offline to the algebraic average of the left and right
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mastoids. Incoming data were filtered (0.01–80 Hz) and recorded with
a 500-Hz sampling rate using Brain Vision Recorder running on a PC.
To detect eye movements and blinks, we used eye tracking to monitor
gaze position and EOG activity recorded with five electrodes (~1 cm
from the outer canthus of each eye, above/below the right eye, and a
ground electrode placed on the left cheek).

Artifact rejection. Data from both experiments were visually in-
spected for EOG and EEG artifacts. Trials containing blinks, eye
movements, blocking, and muscle artifacts were excluded from anal-
ysis. One electrode for one participant in experiment 2 was also
rejected during recording because it had malfunctioned. We also
monitored gaze position during experiment 2 using a desk-mounted
infrared eye tracking system (EyeLink 1000 Plus, SR Research,
Ottawa, ON, Canada). Gaze position data for experiment 2 were also
visually inspected for ocular artifacts. For the analysis of gaze posi-
tion, we further excluded trials in which the eye tracker was unable to
detect the pupil, operationalized as any trial in which the horizontal
gaze position was more than 15° from fixation or the vertical gaze
position was more than 8.5° from fixation. We collected usable gaze
position data (500-Hz sampling rate) for 18 of 24 participants.

Removal of trials with ocular artifacts was effective: maximum
variation in grand-averaged horizontal electrooculogram waveforms
by remembered location bin was � 2.5 �V for experiment 1 and � 2
�V for both the encoding and retrieval in experiment 2. Thus, eye
movements in both experiments corresponded to variations in eye
position of � 0.2° of visual angle (Lins et al. 1993), roughly the size
of the fixation dot. Analysis of the subset of participants (18) for
whom we were able to obtain reliable gaze position data in experiment
2 corroborates the HEOG data obtained from all participants. Varia-
tion in grand-average horizontal gaze position as a function of re-
membered location was � 0.11° for encoding and � 0.08° of visual
angle for retrieval. Variation in grand-average vertical gaze position
data by remembered location was � 0.14° for encoding and � 0.09°
of visual angle for retrieval. For comparison, HEOG for these partic-
ipants showed a � 2.1-�V maximum variation which also corre-
sponds to � 0.2° of visual angle.

Time-frequency analysis. To calculate frequency specific activity at
each electrode we first band-pass filtered the raw EEG data using
EEGLAB (eegfilt, see Delorme and Makeig 2004). Alpha-band anal-
yses were band-pass filtered between 8 and 12 Hz, which is consistent
with our prior work (Foster et al. 2016). For our exploratory analysis
of the full range of frequencies, we band-pass filtered the data at 1-Hz
intervals (4–50 Hz, downsampled to 20 Hz,

filter order: 3 �
sampling rate

low-pass cutoff

We then applied a Hilbert transform (MATLAB Signal Processing
Toolbox) and squared the complex magnitude of the complex analytic
signal for each trial to calculate instantaneous power before averaging
across trials.

Inverted encoding model. Following our prior work (Foster et al.
2016; Sutterer et al. 2019), we estimated spatially selective channel-
tuning functions (CTFs) from the multivariate topographic distribu-
tion of oscillatory power across electrodes. We assumed that the
power at each electrode reflects the weighted sum of eight spatially
selective channels, which we assume reflect the response of neural
populations. Each spatially selective channel was tuned for a different
angular location (Brouwer and Heeger 2009; Foster et al. 2016;
Sprague and Serences 2013; Sprague et al. 2015). We modeled the
response profile of each spatial channel across angular locations as a
half sinusoid raised to the seventh power:

R � sin�0.5��7,

where � is angular location (0–359°), and R is the response of the
spatial channel in arbitrary units. This response profile was circularly
shifted for each channel such that the peak response of each spatial

channel was centered over one of the eight location bins which
were created relative to the original position of the stimulus. These
eight location bins each spanned 45° and were centered on 22.5°,
67.5°, 112.5°, etc. for experiment 1 and on 0°, 45°, 90°, etc. for
experiment 2. Bin centers for each experiment were chosen before
data collection.

An IEM routine was applied to each time point in the alpha-band
analyses and to each time-frequency point in the time-frequency
analyses. We partitioned our data into independent sets of training
data and test data (for details see Assignment of trials to training and
test sets). This routine proceeded in two stages (train and test). In the
training stage, training data B1 were used to estimate weights that
approximate the relative contribution of the eight spatial channels to
the observed response measured at each electrode. Let B1 (m elec-
trodes � n1 observations) be the power at each electrode for each
measurement in the training set, C1 (k channels � n1 measurements)
be the predicted response of each spatial channel (determined by the
basis functions) for each measurement, and W (m electrodes � k
channels) be a weight matrix that characterizes a linear mapping from
“channel space” to “electrode space.” The relationship between B1,
C1, and W can be described by a general linear model of the form

B1 � WC1

The weight matrix was obtained via least-squares estimation as
follows:

Ŵ � B1C1
T�C1C1

T��1

In the test stage we inverted the model to transform the observed
test data B2 (m electrodes � n2 observations) into estimated channel
responses, C2 (k channels � n2 measurements), using the estimated
weight matrix, Ŵ, that we obtained in the training phase:

C2̂ � �ŴTŴ��1ŴTB2

Each estimated channel response function was then circularly
shifted to a common center (i.e., 0° on the “Channel offset” axis of
Fig. 2A) by aligning the estimated channel responses to the channel
tuned for the cued/target location to yield the CTF averaged across the
eight remembered locations.

Finally, because the exact contributions of each spatial channel to
each electrode (i.e., the channel weights, W) varies across participants,
we applied the IEM routine separately for each participant, and
statistical analyses were performed on the reconstructed CTFs. This
approach allowed us to disregard differences in how location-selective
activity is mapped to scalp-distributed patterns of power across
participants, and instead focus on the profile of activity in the common
stimulus or “information” space (Foster et al. 2016; Sprague et al.
2015).

Assignment of trials to training and test sets. Artifact-free trials
were partitioned equally into three independent sets to be used as
training and test data for the IEM procedure (see Inverted encoding
model). We downsampled the data so that each set contained an equal
number of trials and each location bin within a set also contained the
same number of trials. For each of these sets we averaged power
across trials for each location bin. We used a cross-validation routine
such that two sets of estimated power served as the training data and
the remaining set served as the test data. We applied the IEM routine
using each of the three matrices as test data, and the remaining two
matrices as training data. The resulting CTFs were averaged across
each test set.

For the analysis in which we ruled out the possibility that the IEM
was detecting object-specific information, we assigned all trials with
the same object to the same partition. After completing this additional
step, we equated trials across sets and bins in the same manner
described above.

For analyses in which we examined how within participant changes
in selectivity related to behavior, we first downsampled to equate the
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number of trials assigned from each location across conditions. After
completing this additional step, we equated trials across sets and bins
in the same manner described above. Finally, we employed the same
training procedure described above (2/3 of the total data) but split the
final test set into our comparisons of interest. Thus, we used the same
training data for both conditions and only the test data varied for each
comparison.

For analyses that assessed relationships between CTF selectivity
and behavior across participants we downsampled the number of trials
assigned to each location bin for each of the three sets to be equal to
the smallest number of trials assigned to each bin in each set for any
participant. This downsampling approach precluded individual differ-

ences in CTF selectivity driven by the number of the trials included in
the analysis for each participant.

In experiment 2, we sought to compare encoding and retrieval-
related activity. We closely followed the procedure that examined
retrieval-related activity alone, by training on 2/3 of the encoding data
and testing on 1/3 of the retrieval data. By maintaining these same
ratios of training to test data, we could more directly compare the
results from encoding and retrieval.

Resampling random assignment. To avoid spurious results due to
the random assignment of trials, we repeated each analysis multiple
times with a different random assignment of trials. When comparing
between conditions, we conducted 500 iterations per time point. When
comparing against a permuted null distribution (which is a time-
consuming procedure), we conducted 10 iterations per time point,
given the computational time needed for each analysis. To decrease
computation time further for the 4–50 Hz time-frequency analysis, we
downsampled the data matrix of power values to one sample every 20
ms. We downsampled after calculating power so that downsampling
did not affect our calculation of power. The data matrix was not
downsampled for analyses restricted to the alpha band.

Calculating CTF selectivity. To quantify selectivity at each time
point we calculated the slope of the CTF via linear regression. We
collapsed across channels of equidistance (e.g., � 2 bins). As such,
higher slope values indicate greater CTF selectivity while lower
values indicate less CTF selectivity.

To test whether CTF selectivity was reliably above chance, we
tested whether CTF slope was greater than zero using a one-sample
t-test. Because mean CTF slope may not be normally distributed under
the null hypothesis, we employed a Monte Carlo randomization
procedure to empirically approximate the null distribution of the
t-statistic. To generate our null distribution, we randomly shuffled the
remembered location labels in each training/test set so that the labels
were random with respect to the observed responses at each electrode.
We then repeated 1,000 iterations of this randomization procedure to
obtain a null distribution of t-statistics at each time point.

Finally, to test whether CTF selectivity was reliably above chance
we employed a nonparametric cluster approach that corrects for
multiple comparisons by taking into account autocorrelation in time
and frequency (Cohen 2014; Maris and Oostenveld 2007). Specifi-
cally, we applied a t-value threshold corresponding to P � 0.05
(experiment 1: t � 1.706; experiment 2: t � 1.714) to identify clusters
of pixels (time and frequency analysis) or adjacent time points (alpha
only analysis). At the same time, we applied the same threshold to
each permutation and calculated the largest summed t-statistic for any
cluster in the permutation, resulting in a distribution of maximal
summed t-statistics for our permuted null distribution. Finally, the
sizes of the significant clusters of the nonpermuted data were thresh-
olded such that only clusters larger than the 95th percentile of the
permuted distribution were considered reliable (Type 1 error less than
0.05). Therefore, our cluster test was a one-tailed test, corrected for
multiple comparisons.

RESULTS

Experiment 1

Experiment 1 was designed to test whether EEG activity
tracked the retrieval of precise spatial locations from LTM.
The design includes two important properties. First, we asked
subjects to precisely report a remembered location using a
continuous report procedure (Wilken and Ma 2004; Zhang and
Luck 2008). This provides a sensitive test of memory accuracy
as the deviation from the correct location. Second, we recorded
EEG activity during memory retrieval for the purposes of
building and evaluating an encoding model. This inverted
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alpha-band power. CTF selectivity was reliable from 588 to 1,250 ms (quan-
tified as CTF slope; P � 0.05, indicated by the black marker). B: alpha CTF
derived with a set of 8 delta functions and averaged across significant time
points (588–1,250 ms). Delta function CTFs are graded confirming that the
signal carried by the topography of alpha-band power is intrinsically graded.
Thus, the use of a graded basis set is appropriate. Shaded area represents � 1
SE. C: alpha CTF derived with a graded basis set and averaged across
significant time points (588–1,250 ms). Shaded area represents � 1 SE. D:
channel responses for each of the eight stimulus location bins averaged across
significant time points (588–1,250 ms). The channel response peaks at the
channels preferred location, indicating that alpha activity is selective for the
specific remembered location.
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encoding model (IEM) can track memory retrieval as a graded
function of spatial location.

Behavioral performance. On day 1, participants studied
120 object-location associations (Fig. 1A). On day 2, par-
ticipants returned for a retrieval session in which we re-
corded EEG. Participants received feedback based on their
response error (�180° to 180°). During both days, their
performance improved (Fig. 1B). During day 1, average
response error improved significantly from the first [mean
(M) � 53.6°, SD � 17.7°] to the final test (M � 17.6°,
SD � 11.1°] of the session [t(26) � 13.2, P � 0.001,
two-tailed). As a result on continued feedback, memory also
improved from the first (M � 25.2°, SD � 14.1°) to the final
test (M � 12.7°, SD � 9.3°) during the second session
[t(26) � 7.3, P � 0.001, two-tailed].

Alpha-band (8–12 Hz) topography tracks spatial represen-
tations retrieved from LTM. In experiment 1, we tested whether
oscillatory EEG activity tracks the time-resolved retrieval of
precise spatial memories. Because we have previously found
that alpha-band activity tracks spatial locations held in working
memory (Foster et al. 2016), we were a priori interested in
whether alpha-band power would also track locations retrieved
from long-term memory. Thus, we used an IEM to test whether
the multivariate topography of alpha-band power tracked lo-
cations retrieved from long-term memory. If the pattern of
alpha-band power contains spatially selective information
about the remembered location, we would expect to see a
channel tuning function (CTF) with a peak response in the
channel tuned for the remembered location (a channel offset of
0° in Fig. 2) following the retrieval cue. This pattern can be
quantified as slope across the position channels as distance
from the retrieved location increases. A slope of zero reflects
no spatial selectivity in the CTF, while a positive slope
reflects spatial selectivity for the location associated with
the cue. To test this hypothesis, we conducted a permutation
test (see MATERIALS AND METHODS) to determine at which time
points we observed a CTF slope that was reliably above
zero. We detected reliable selectivity for spatial information
(i.e., slopes � 0) that was sustained during the retrieval
interval (588 –1,250 ms; Fig. 2A).

One possibility is that this graded tuning is an artifact of our
selection of a graded basis set (Ester et al. 2015; Foster et al.
2016; Saproo and Serences 2014). To investigate this possibil-
ity, we reran this analysis using a delta-function basis set that
predicts a peak response in the preferred channel and no
response in adjacent channels. If the topography of alpha
power represents spatial locations in a graded manner, we
would still expect a graded pattern of responses. Instead, if the
observed results were driven by our selection of a basis set, we
would expect a peak response in the correct bin and a little to
no response in all other bins. Using a delta function basis set,
we observed a graded pattern of responses across remembered
locations (Fig. 2B) that is similar to the pattern of activity we
see when we apply the standard basis set (Fig. 2C). This
suggests that our results are not an artifact of our selection of
a basis set but reflect a real graded tuning profile during the
retrieval of spatial memories.

Although the aggregate results revealed that channel activity
peaked at the remembered location and dropped in a graded
fashion as the distance form that location increased, this
analysis did not establish that this orderly pattern was present

at each location. Indeed, a coarser hemifield or quadrant-based
signal could produce such a pattern. If alpha-band activity
precisely tracks retrieved spatial locations, we should observe
a graded pattern for each remembered location. We examined
the average channel response during time points where we
previously observed reliable spatial selectivity (588–1,250 ms)
for eight location bins separately (Fig. 2D). The channel
response for each location revealed graded information
throughout the same window, and the channel responses for all
locations were significant (All slopes � 0.05, all P values �
0.002). Therefore, alpha-band CTFs track memory retrieval of
a precise spatial location.

Identifying frequencies that track the retrieval of spatial
location. A motivating question for the present work was
whether spatially selective information was specific to alpha-
band activity. On the one hand, prior work has found that
alpha-band activity selectively tracks spatial locations that are
covertly attended (Foster et al. 2017b) or held in working
memory (Foster et al. 2016). On the other hand, theta-band
(4–7 Hz) and beta-band (16–25 Hz) activity are known to play
an important role in long-term memory (Kerren et al. 2018;
Morton and Polyn 2017; Nyhus and Curran 2010). Therefore,
we performed the same IEM analysis at each frequency and
time point from 4 to 50 Hz to test whether other frequency
bands also carried spatially selective information about the
remembered location. We conducted a permutation test at each
frequency and time point and used a cluster correction to
identify frequencies with CTFs that were reliably above zero
(Fig. 3A). The most robust and sustained selectivity was in the
alpha band (~400–1,250 ms).

Fig. 3. Identifying frequencies that track retrieved locations for experiment 1.
A: an inverted encoding model (IEM) was used to reconstruct spatially
selective channel tuning functions (CTFs) from the topographic distribution of
total power across a range of frequencies (4–50 Hz). Alpha power tracked
retrieval of spatial information. B: training and testing across shapes. Alpha
power continued to track the retrieval of spatial information when the IEM was
trained and tested on separate shape cues, indicating that CTFs reflect remem-
bered locations not the retrieval cue. Points at which CTF slope values were
not reliably above zero as determined by a cluster corrected permutation test
(P � 0.05) were set to dark blue.
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Spatially selective alpha-band activity generalizes across
visual objects associated with the same spatial location. For
each participant, each object was associated with a unique
location such that object and position were confounded within
this analysis. Thus, it is possible that the selectivity we ob-
served across some or all frequencies, reflects patterns of
activity elicited by the cue rather than activity related to the
retrieval of a spatial position. To investigate this, we reran
the analysis while ensuring that distinct items were included
in the training and test sets (see MATERIALS AND METHODS).
Despite this constraint, we observed similar results (Fig. 3B),
confirming that the sustained spatial selectivity we observed
reflected the position associated with each cue rather than the
cue itself. Thus, for all subsequent IEM analyses we do not
constrain assignment to training and test sets by cue. We also
observed a brief period of spatial selectivity in the beta range
(16–25 Hz); however, we note that this activity was not
observed when we did not constrain the assignment of items to
training and test sets.

Spatial selectivity of alpha-band activity increases with
repetition and feedback. A consequence of providing feedback
during day 2 is that memory performance improved throughout
the session. To examine whether alpha-band CTFs tracked
these broad behavioral improvements, we split the test data
into the first half and second half of trials. Behaviorally, we
observed that memory performance improved from the first
half (M � 20.3°, SD � 11.9°) to the second half (M � 13.9°,
SD � 9.4°) of the session [t(26) � 7.2, P � 0.001, two-tailed,
Fig. 4A]. Furthermore, a mixture model was used to assess
whether these decreases in average response error were driven
by changes in the probability of retrieval and/or mnemonic
precision (see MATERIALS AND METHODS). During day 2, the
probability of retrieval (Pmem) increased over time [first half:
M � 86.3%, SD � 13.6%; second half: M � 93.6%,
SD � 9.5%; t(26) � �6.3, P � 0.001, two-tailed] and mne-
monic precision improved over time [first half: M � 13.6°,
SD � 3.7°; second half: M � 12.3°, SD � 4.1°, t(26) � 5.52
P � 0.001, two-tailed]. If alpha-band CTFs are sensitive to
memory performance, we would expect greater spatial selec-
tivity in the second versus first half of the session. To test this
prediction, we isolated the time points where aggregate data
revealed significant alpha CTFs (Fig. 2A; 588 ms after cue
onset until the response) and then compared average CTF slope
across the first and second halves of the study. Indeed, spatial
selectivity was significantly higher for the second half (CTF
slope, M � 0.085, SD � 0.061) relative to the first half (M �
0.06, SD � 0.055) of the experiment [t(26) � �3.29, P �
0.003, two-tailed; Fig. 4B].

This reveals that alpha-band activity tracks the improvement
in memory performance across learning episodes. Finally, CTF
selectivity across the same window did not predict between-
subject variations in the accuracy of recall [�(26) � �0.11,
P � 0.6]. This null result could have numerous explanations
but here we offer one hypothesis. While we instructed partic-
ipants to immediately recall the location that corresponded to
the object cue, it may be that some participants waited longer
than others to call the correct location to mind while other
participants relied on a more prospective strategy in which they
immediately recalled the target location. This kind of strategic
difference could yield large differences in mean CTF slope that
may have been unrelated to whether the critical item could be
retrieved. Indeed, the response time analysis in the next section
lends further plausibility to this hypothesis.

Spatially selective alpha-band activity tracks within- and
between-subject variations in response latency. The latency of
memory retrieval varied across trials and participants to a large
extent (see Fig. 5A). To examine whether alpha-band CTFs
tracked these behavioral differences in response time (RT), we
split the test data into two halves based on the median RT
(average fast RT: M � 854 ms, SD � 241 ms; average slow
RT: M � 1,961 ms, SD � 1,055 ms). If alpha-band CTFs track
the latency of memory retrieval, we would expect greater
location selectivity on trials in which participants responded
more quickly. Indeed, location selectivity was significantly
greater when participants responded more quickly (M � 0.085,
SD � 0.054) than when they responded slowly [M � 0.051,
SD � 0.060; t(26) � �4.29, P � 0.001, two-tailed; Fig. 5B].
This pattern supports the hypothesis that participants re-
sponded more quickly when they had already retrieved the
spatial information before the onset of the response cue,
yielding a higher level of CTF selectivity during trials with
faster responses.

Across participants, we observed substantial variation in
median RTs (range � 504–2,025 ms). To examine whether
alpha-band CTFs tracked these individual differences in be-
havior, we tested whether there was a correlation between
median RT and the selectivity of alpha-band CTFs (measured
as slope). We predicted that participants who responded more
quickly (i.e., faster RTs) would also have greater spatial
selectivity (i.e., higher CTF slope). We observed a trending
negative relationship between RT and CTF slope, as predicted
(� � �0.36; P � 0.07; Fig. 5C). In addition to reflecting
differences in the immediate accessibility of spatial memories,
this relationship could also be driven by individual differences
in the extent to which participants engaged in prospective
retrieval during the delay interval. This is our working hypoth-
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Fig. 4. Assessing the relationship between alpha selectiv-
ity and memory performance for experiment 1. A: average
response error improved from the first to the second half
of the experiment (P � 0.001). Error bars represent � 1
SE. B: time-resolved channel tuning function (CTF)
slopes for trials from the first and second half of the
experiment. CTF slope reflects learning across the session
and reveals significantly higher spatial selectivity for the
second half of the experiment relative to the first half (P �
0.003). Reliable differences were assessed by averaging
across time points where we observed reliable CTFs for
all trials (gray box) and comparing CTF slope between the
first and second half of the experiment. Shaded error bars
represent � 1 SE.
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esis, given that the differences in response latency seemed too
large to reflect differences in the immediate accessibility of the
spatial memories alone.

Experiment 2

In experiment 2, we replicated and extended experiment 1 in
two important ways. First, to further examine the relationship
between alpha-band selectivity and memory performance, we
recorded EEG data throughout the learning process, including
the first retrieval attempts. Second, we recorded EEG during
both encoding and retrieval, which allowed us to test the extent
that retrieval-related oscillatory activity resembled encoding-
related oscillatory activity.

Behavioral performance. During a single session, partici-
pants learned 80 object-location associations (Fig. 1C) with
interleaved study and retrieval. During study trials, participants
actively maintained the associated spatial location over a 1,250
ms delay interval. During retrieval trials, participants had to
retrieve the associated spatial location from long-term mem-

ory. During study trials, memory performance was very accu-
rate and improved modestly but reliably from the first half
(M � 4.7°, SD � 1°) to the second half (M � 4.4°, SD � 0.9°)
of the session [t(23) � 2.42, P � 0.024, two-tailed; Fig. 1D].
Mixture modeling revealed that this change was due to an
improvement in mnemonic precision [first half: M � 5.8°,
SD � 1.2°; second half: M � 5.4°, SD � 1.1°; t(23) � 2.28,
P � 0.032 two-tailed] while no change was observed for
probability of retrieval [first half: M � 99.9%, SD � 0.30%;
second half: M � 99.9%, SD � 0.16%; t(23) � �0.82, P �
0.42, two-tailed], which was at ceiling. For the LTM retrieval
trials, we observed a substantial improvement in memory perfor-
mance across the session as learning progressed. Memory error
decreased from the first half (M � 40.8°, SD � 14.0°) to the
second half [M � 16.2°, SD � 11.9°; t(23) � 17.0, P � 0.001,
two-tailed; Fig. 6A] of the experiment. We replicated our finding
from experiment 1 that the reduction in memory error was driven
by both an increase in the probability of retrieval [first half: M �
61.1%, SD � 16.1%; second half: M � 89.9%, SD � 13.9%;
t(23) � �15.4, P � 0.001, two-tailed] and an improvement in
mnemonic precision [first half: M � 13.7°, SD � 4.4°; second
half: M � 11.3°, SD � 2.7°; t(23) � 4.12, P � 0.001, two-tailed].
Thus, long-term memory improved throughout the session as
participants learned the object-location associations.

One goal for experiment 2 was to create a larger range of
performance throughout the session in which EEG data were
recorded. In line with this goal, we observed a much larger
range in mean response error in experiment 2 (71.0° run
1–15.2° run 9; Fig. 1D) than in day 2 of experiment 1 (25.2°
run 1–12.3° run 8), giving us the opportunity to apply the
IEMs approach across the full trajectory of learning.

Spatial selectivity of alpha-band activity increases with
repetition and feedback. In experiment 1, alpha-band CTFs
tracked retrieval of spatial locations from long-term mem-
ory. Furthermore, spatial selectivity of alpha-band CTFs
increased as memory performance improved with repetition
and feedback (Fig. 4). Experiment 2 was designed to repli-
cate and extend those results over a larger range of behavior.
We predicted that alpha-band CTFs would demonstrate
higher selectivity when memories were more accurate. In
line with this prediction, the average selectivity (i.e., CTF
slopes) was larger in the second half of the session (M �
0.048, SD � 0.033) than in the first half [M � 0.012,
SD � 0.022; t(23) � �4.79, P � 0.001; two-tailed; Fig.
6B]. Note, for this and all subsequent average CTF analyses,
we averaged from 588 ms (the starting time point used in
experiment 1) until the onset of the response cue. Control
analyses revealed that increases in alpha-selectivity across
the session could not be attributed to increases in alpha
power across the recoding session (Supplemental Fig. S1;
https://figshare.com/s/9f594406315b89b21e9a). As in ex-
periment 1, CTF slope did not track memory performance
between participants [�(23) � �0.14, P � 0.52]. Thus, the
spatial selectivity of alpha activity tracked broad improve-
ments in memory performance across the session, but not
individual differences in memory performance.

Spatially selective alpha-band activity tracks response
latency. As in experiment 1, we found that the selectivity of
alpha-band CTFs tracked within- and between-subject varia-
tions in RT (Fig. 7). A median split on RT revealed greater
spatial selectivity for trials with fast RTs (CTF slope: M �
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Fig. 5. Assessing the relationship between alpha selectivity and response times
(RT) for experiment 1. A: aggregate distribution of all participants’ fast and
slow response times. Response times � 7 s are represented in the last bin of
the histogram. B: time-resolved channel tuning function (CTF) slope for trials
with the fastest and slowest response times. CTF slope reflects response
latency and reveals that spatial selectivity was higher for trials when partici-
pants responded quickly (P � 0.001). Reliable differences were assessed by
averaging CTF slope across time points where we observed reliable CTFs for
all trials (gray box) and comparing CTF slopes for slow and fast trials. Shaded
error bars represent � 1 SE. C: alpha selectivity is modestly correlated with
response times across subjects although the relationship is not significant
[�(26) � �0.36 P � 0.07].
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0.035, SD � 0.03) than trials with slow RTs [M � 0.021,
SD � 0.018, t(23) � �2.53, P � 0.019, two-tailed; Fig. 7B).
We also replicated our finding that participants with faster
RTs showed greater spatial selectivity of alpha-band CTFs
(� � �0.49; P � 0.02; Fig. 7C). This link between CTF slope
and RTs may reflect strategic differences between participants

who prospectively recalled the associated location quickly
following cue onset and those that waited until closer to the
response window to bring that information to mind.

Comparing frequency specificity at encoding and retrieval.
In experiment 1, we found that oscillatory activity in the alpha
band (8–12 Hz) tracked retrieved locations following a mem-
ory cue. In experiment 2, we replicated this finding, with
cluster corrected permutation tests showing that primarily os-
cillations between 8 and 12 Hz (~500–1,500 ms; Fig. 8A), and
to a lesser extent, oscillations between 12 and 20 Hz (~900–
1200 ms; Fig. 8A), tracked the retrieved location. Note that, to
obtain the most robust measurement of spatially sensitive
frequencies at retrieval, we only tested our IEM on trials from
the second half of the experiment when memory performance
and spatial selectivity were highest (Fig. 6, A and B). For
consistency, we applied the same approach to study trials.
Applying the IEM to study trials revealed that spatially selec-
tive information was represented across a wider range of low
frequencies (Fig. 8B; 4–8 Hz, 0–500 ms; 8–20 Hz, ~200–
1,750 ms; 20–30 Hz, ~1,500–1,750 ms) than during retrieval.
However, we observed the most sustained spatial selectivity
across the delay period in the alpha band (8–12 Hz). These
results replicate past work showing that alpha-band activity
tracks locations held in working memory (Foster et al. 2016;
Sutterer et al. 2019). Finally, an overlay plot of frequency
bands carrying spatially specific information in both the en-
coding and retrieval tasks (Fig. 8C) revealed considerable
overlap in the 8–12 Hz band across conditions. Together these
findings reveal that there is substantial, although not complete,
overlap in the range of frequencies carrying spatially specific
information during memory encoding and retrieval.

Patterns of alpha-band activity generalize across encoding
and retrieval. While the same frequency band carried spatial
information during both study and retrieval, this does not
necessarily mean that the multivariate patterns of activity
corresponding to each location are also similar during encoding
and retrieval. To provide a comprehensive test of encoding-
retrieval similarity, we trained the IEM using study trials and
tested the model on retrieval trials. We observed robust spatial
selectivity throughout the retrieval interval (520–1,750 ms;
P � 0.05; Fig. 9). This provides evidence that the multivariate
pattern of alpha activity during retrieval is well described as a
reinstantiation of the pattern of alpha-band activity seen during
encoding.

DISCUSSION

The present work represents a new approach for tracking and
understanding the neural mechanisms underlying retrieval of
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precise feature memories. In two experiments, we employed a
combination of a continuous report task, in which participants
learned to associate individual objects with specific spatial
locations, with the application of an inverted encoding model
(IEM) to ongoing EEG activity. Using an IEM, we showed that
rhythmic brain activity enables temporally resolved tracking of
the retrieval of precise spatial locations from long-term mem-
ory.

A novel aspect of our work was the ability to search for
frequencies that code for precise spatial memories. Recent
theories about the role of neural oscillations in memory pro-
pose that both the frequencies supporting cognitive operations
at encoding and retrieval and the specific patterns of activity
within those frequencies should overlap (Siegel et al. 2012;
Watrous and Ekstrom 2014; Watrous et al. 2015). In line with
this prediction, we observed considerable overlap in the fre-
quencies carrying spatial memory representations between en-
coding and retrieval. Specifically, we observed sustained spa-
tial selectivity, primarily in the alpha band (8–12 Hz), during
both study and long-term memory retrieval. We also found that
the multivariate patterns of alpha-band activity reinstated dur-

ing retrieval are similar to those patterns observed during the
initial encoding of locations. These observations provide new
evidence that encoding-retrieval oscillatory similarity extends
to the representation of precise feature representations at the
population level, supporting the idea that oscillatory brain
activity plays a critical role in memory formation and reinstate-
ment. However, it is worth noting that a broader range of
frequencies tracked to-be-remembered locations at study than
at retrieval, suggesting that not all spatially sensitive frequen-
cies engaged during stimulus presentation are later reinstated.

The observation that alpha-band activity tracks retrieved
spatial memories is similar to what has been observed during
visual working memory maintenance (Foster et al. 2016,
2017a; Sutterer et al. 2019) and is consistent with work that
suggests a role for alpha in memory retrieval and memory-
guided attention (Fukuda and Woodman 2017; Stokes et al.
2012; Waldhauser et al. 2016). However, this stands in contrast
with other findings that suggest an important role of theta and
beta activity in long-term memory. We observed relatively
little spatial selectivity in the beta-band during memory re-
trieval, which is consistent with the notion that beta-band
(15–25 Hz) activity may be more important for the encoding
and retrieval of category-specific information (Morton and
Polyn 2017; Morton et al. 2013) rather than spatial informa-
tion. While past studies have found that theta-band activity
(4–7 Hz) plays a key role in episodic memory (Hsieh and
Ranganath 2014; Kerren et al. 2018; Nyhus and Curran 2010)
and in the hippocampus during spatial navigation (Bohbot et al.
2017; Watrous et al. 2011), it is likely that our scalp EEG
signal is insensitive to theta signals prominent in the hippocam-
pus (Hsieh and Ranganath 2014). Future work from modalities
that more directly index hippocampal activity (i.e., intracranial
recordings from the hippocampus) or use source reconstruction
to isolate activity originating in the medial temporal lobe
(Kerren et al. 2018) might provide insight into the role of theta
activity in precise spatial memory reinstatement.

Another promising application of the approach employed
here is the ability to compare the time course with which
fine-grained and coarser memory representations emerge. For
example, spatially selective alpha activity emerged consider-
ably later than some prior observations of hemifield-selective
activity. While hemifield selective activity has been observed
within 200 ms of the onset of a retrieval cue (Waldhauser et al.
2016), our time by frequency analysis revealed no evidence of
activity related to the specific retrieved location, in any fre-

Fig. 8. Identifying frequencies that track encoded and retrieved locations for
experiment 2. An inverted encoding model was used to reconstruct spatially
selective channel tuning functions (CTFs) from the topographic distribution of
total power across a range of frequencies (4–50 Hz) at retrieval and study. To
ensure robust retrieval memory performance, only trials from the second half
of the session were used in the test set for this analysis. A: primarily alpha
power tracked spatial information during retrieval trials. B: initially and at the
end of the delay, a broad range of frequencies tracked the encoded location
(4–35 Hz) while primarily alpha power tracked the remembered location
through the entire delay. C: overlay plot of significant activity during retrieval
and study. Teal points reflect reliable spatial selectivity during study, orange
points reflect reliable selectivity at retrieval, and magenta points reflect overlap
selectivity at study and retrieval. Points at which CTF slope values were not
reliably above zero as determined by a cluster corrected permutation test (P �
0.05) were set to dark blue.
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Fig. 9. Testing whether the multivariate patterns of alpha power at study are
reinstated at retrieval. Alpha power tracks the retrieval of spatial information
when the inverted encoding model was trained on study data and tested on
retrieval data, indicating that the pattern of alpha-band activity observed during
study is reactivated at retrieval. Shaded error bars represent � 1 SE. Markers
on the top of the plot mark the periods of reliable spatial selectivity (P � 0.05).
CTF, channel tuning function.
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quency band, until ~400 ms after the retrieval cue. One
possible explanation for this latency difference is that hemi-
sphere reactivation and retrieval of fine-grained spatial repre-
sentations rely on different processes. For instance, Gratton
and colleagues (1997) suggest that the hemisphere bias they
observed may be more structural, resulting from the formation
of a stronger trace in the hemisphere contralateral to the
hemifield in which the stimulus was presented. In the present
study, the relatively slower onset of alpha CTFs implies a more
effortful retrieval of precise spatial information. Another po-
tential explanation is that context reinstatement during an
object recognition task could occur more rapidly than object-
cued retrieval of spatially selective information. Further work
is needed to explore this difference in latency between hemi-
field effects and the reactivation of the fine-grained alpha
topography that tracks specific locations.

We modeled LTM retrieval performance using a mixture
modeling approach. This approach is commonplace in the field
of visual working memory (Wilken and Ma 2004; Zhang and
Luck 2008). More recently, this approach proven useful in the
study of LTM (Brady et al. 2013; Harlow and Donaldson 2013;
Murray et al. 2015; Richter et al. 2016). A key advantage of the
mixture modeling approach is that it provides distinct measures
of mnemonic precision and the probability that memories are
retrieved (Fan and Turk-Browne 2013; Harlow and Yonelinas
2016; Sutterer and Awh 2016). Initial studies have found that
these parameters are reflected by distinct neural signals (Mur-
ray et al. 2015; Richter et al. 2016), providing further
evidence that separately modeling mnemonic precision and
probability of retrieval is a meaningful distinction. Our
results demonstrate that both the probability of retrieving
long-term memories and the precision with which those
memories are retrieved continue to improve with feedback
over many repetitions. We propose that this more sensitive
approach of assessing memory accuracy will shed new light
on long-standing questions in the field.

Does alpha-band activity reflect memory reinstatement?

There is a considerable body of work demonstrating links
between alpha-band activity and spatial attention (Foster and
Awh 2019; Foster et al. 2017b; Worden et al. 2000). Thus, it is
possible that the spatial alpha-band representations we report
here reflect sustained attention to studied and remembered
locations. This raises the question of whether deployment of
covert attention to a remembered location at retrieval qualifies
as memory reinstatement. In our view, it does. Reinstatement is
typically defined by consistent patterns of activity between
encoding and retrieval (Danker and Anderson 2010), and in the
present study we observed that both the frequencies and pat-
terns of activity engaged during initial encoding are reengaged
during retrieval. We also note that it is well known that it is
possible to attend to features and categories. Thus, most dem-
onstrations of category or feature level reinstatement share a
similar relationship with attention. In line with this idea,
retro-cuing studies have demonstrated that categories (La-
Rocque et al. 2013; Lewis-Peacock et al. 2012; Rose et al.
2016) or features (LaRocque et al. 2017) that must be attended
to prepare for an upcoming test are uniquely decodable, while
the features of items that are not necessary for the current probe
cannot be decoded. Thus, past and present findings are consis-

tent with the view that there is considerable overlap between
attention and memory (Gazzaley and Nobre 2012).

This tight coupling of memory and attention has inspired an
active body of research exploring the extent that attention to a
stimulus and attention guided by memory are supported by the
same neural underpinnings (Summerfield et al. 2006). New
fMRI evidence suggests that the networks supporting attention
in these cases are not completely overlapping. For instance,
hemispheric asymmetries observed in parietal cortex when
observers attend a stimulus are not observed when memory
guides attention to a stimulus (Rosen et al. 2015), and memory-
guided attention engages a different constellation of cortical
regions than stimulus guided attention (Rosen et al. 2018). The
present work demonstrates that while differences exist in the
brain networks that support stimulus and memory-guided at-
tention a similar constellation of oscillatory activity supports
both processes.

Conclusion

Prominent models have argued that spatial-temporal context
is the backbone of episodic memory (Ekstrom and Ranganath
2018; O’Keefe and Nadel 1978) serving as an index for the
retrieval of specific past experiences. Thus, a method that
allows temporally resolved tracking of spatial retrieval from
LTM may provide a powerful tool for understanding human
memory. Here, we present such a method and show that it
tracks both the accuracy and latency of memory-guided behav-
ior. Moreover, we provide new evidence confirming a clear
prediction of reinstatement models of LTM retrieval. The
format of oscillatory activity during encoding into LTM is
recapitulated during the subsequent retrieval of those memo-
ries.
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